
ESP32 Starter Kit

keyestudio WiKi

Nov 23, 2023

FKS0001 KEYESTUDIO ESP32 INVENTOR LEARNING KIT

1 1.Introduction 3

2 2.Specifications 5

3 3.Pin out 7

4 4.Components 9

5 Inventor Learning Kit Expansion Board 11

6 Product Introduction 15
6.1 About Keyestudio . 15
6.2 Obtain Information and After-sales Service . 15
6.3 Warning . 15
6.4 Copyright . 15
6.5 ESP32 Inventor Learning Kit . 16

7 Installation Steps 21

8 Arduino Tutorial 27
8.1 1.Install Development Software and Driver . 27
8.2 2.Install Development Board and Driver . 29
8.3 3.Install the Development Board . 35
8.4 4.Install Libraries . 43
8.5 Arduino Project . 45

9 Scratch Tutorial 165
9.1 Scratch Code file download . 165
9.2 Scratch Project . 165

i

ii

ESP32 Starter Kit

FKS0001 KEYESTUDIO ESP32 INVENTOR LEARNING KIT 1

ESP32 Starter Kit

2 FKS0001 KEYESTUDIO ESP32 INVENTOR LEARNING KIT

CHAPTER

ONE

1.INTRODUCTION

Keyestudio ESP32 Core board is a Mini development board based on the ESP-WROOM-32 module. The board has
brought out most I/O ports to pin headers of 2.54mm pitch. These provide an easy way of connecting peripherals
according to your own needs.

When it comes to developing and debugging with the development board, the both side standard pin headers can make
your operation more simple and handy.

The ESP-WROOM-32 module is the industry’s leading integrated WiFi + Bluetooth solution with less than 10 external
components. It integrates antenna switches, RF balun, power amplifiers, low noise amplifiers, filters as well as power
management modules. At the same time, it also integrates TSMC’s low-power 40nm technology, power performance
and RF performance, making it safe, reliable and easy to expand to a variety of applications.

3

ESP32 Starter Kit

4 Chapter 1. 1.Introduction

CHAPTER

TWO

2.SPECIFICATIONS

Microcontroller: ESP-WROOM-32 Module

USB-serial port chip: CP2102-GMR

Working voltage: DC 5V

Working current80mAAverage

Current supply500mAMinimum

Working temperature range : -40°C ~ +85°C

WiFi modeStation/SoftAP/SoftAP+Station/P2P

WiFi protocol 802.11 b/g/n/e/i802.11nspeed up to 150 Mbps

WiFi frequency range2.4 GHz ~ 2.5 GHz

Bluetooth protocol conform to Bluetooth v4.2 BR/EDR and BLE Standard

Dimensions552613mm

Weight9.3g

5

ESP32 Starter Kit

6 Chapter 2. 2.Specifications

CHAPTER

THREE

3.PIN OUT

ESP32 has fewer pins than commonly used processors, but it doesn’t have any problems reusing multiple functions on
pins.

Warning: The pin voltage level of the ESP32 is 3.3V. If you want to connect the ESP32 to another device with an
operating voltage of 5V, you should use a level converter to convert the voltage level.

Power Pins: The module has two power pins +5V and 3.3V. You can use these two pins to power other devices and
modules.

7

ESP32 Starter Kit

** GND Pins**The module has three grounded pins.

Enable pin (EN) : This pin is used to enable and disable modules. The pin enables module at high level and disables
module at low level.

Input/Output pins (GPIO) : You can use 32 GPIO pins to communicate with LEDs, switches and other input/output
devices. You can also pull these pins up or down internally.

Note: Though GPIO6 to GPIO11 pins (SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD pins)
are used for SPI communication for the internal module, which are not recommended.

ADC: You can use the 16 ADC pins on this module to convert analog voltages (the output of some sensors) into
digital voltages. Some of these converters are connected to internal amplifiers and which are capable of measuring
small voltages with high accuracy.

DAC: ESP32 module has two A/D converters with 8-bit precision.

Touch pad: There are 10 pins on the ESP32 module that are sensitive to capacitance changes. You can attach these
pins to certain PCB’s pads and use them as touch switches.

SPI: There are two SPI interfaces on the module, which can be used to connect the display screen, SD/microSD
memory card module as well as external flash memory.

I2C: SDA and SCL pins are used for I2C communication.

Serial Communication (UART) : There are two UART serial interfaces on this module, which can be used to transfer
up to 5Mbps of information between two devices . The UART0 also has CTS and RTS control functions.

PWM: Almost all ESP32 input/output pins can be used for PWM (pulse-width modulation). Using these pins can
control motors, LED lights and colors.

8 Chapter 3. 3.Pin out

CHAPTER

FOUR

4.COMPONENTS

9

ESP32 Starter Kit

10 Chapter 4. 4.Components

CHAPTER

FIVE

INVENTOR LEARNING KIT EXPANSION BOARD

This expansion board is compatible with the Keyestudio Nano Plus development board and Keyestudio ESP32 devel-
opment board. The voltage on VCC can be set to 3.3V (ESP32) or 5V(Nano) via a DIP switch.

It integrates four buttons, four LEDs(red, yellow, green and blue), six WS2812 RGB LEDs, a buzzer, a PIR motion
sensor, an IR receiver, a sound sensor, a photoresistor, a 8002 amplifier, a potentiometer, an ultrasonic sensor, a 4-bit
digital tube display, a 8x8 dot matrix display and a LCD 1602 display.

What’s more, each pin possesses its own VCC and GND, which brings a higher compatibility to the board and provides
more opportunities for extended learning of other modules.

Modules Introduction

11

ESP32 Starter Kit

Pin out

12 Chapter 5. Inventor Learning Kit Expansion Board

ESP32 Starter Kit

13

ESP32 Starter Kit

14 Chapter 5. Inventor Learning Kit Expansion Board

CHAPTER

SIX

PRODUCT INTRODUCTION

6.1 About Keyestudio

Keyestudio is the best-selling brand owned by KEYES Corporation. Our product contains Arduino development boards,
expansion boards, sensors and modules, Raspberry Pi, micro:bit expansion boards as well as smart cars, which can help
customers at any level to learn about Arduino.

Notably, all of our products are in line with international quality standards and are greatly appreciated in a broad menu
of different markets across the world.

Welcome to check out more contents from our official website:http://www.keyestudio.com

6.2 Obtain Information and After-sales Service

1.Download address:https://fs.keyestudio.com/FKS0001

2.If something is found missing or broken, or you have some difficulty learning the kit, please feel free to contact us.
Welcome to send email to us: service@keyestudio.com 3.We will endeavor to update projects and products continu-
ously from your sincere advice! Thanks!

6.3 Warning

1.This product contains tiny parts(screws and copper pillars), so please keep out of reach of children to prevent from
lacerations or accidental ingestion. For children under 8, please accompany with adults when using.

2.This product contains conductive parts(control board and electronic modules). Please operate according to the re-
quirements of tutorials. Otherwise, improper operation may damage parts due to overheating. In this case, do not touch
and immediately disconnect the circuit power.

6.4 Copyright

The Keyestudio trademark and logo are the copyright of KEYES DIY ROBOT co.,LTD. All products under Keyestudio
brand can’t be copied, sold or resold without authorization by anyone or company.

If you are interested in our products, please contact to our sales representatives: fennie@keyestudio.com

15

http://www.keyestudio.com
https://fs.keyestudio.com/FKS0001

ESP32 Starter Kit

6.5 ESP32 Inventor Learning Kit

6.5.1 1. Description

This learning kit is a programmable tool specialized for kids above 6, which boasts 15 modules and sensors such as
LEDs, buttons, a LCD, a photosensor, a sound sensor, an IR receiver, a temperature and humidity sensor as well as 30
interesting projects.

For your convenience, Arduino C language and graphical programming are provided, which empower to cultivate
programming thinking.

16 Chapter 6. Product Introduction

ESP32 Starter Kit

6.5.2 2. Features

1. Easy wiring: The wiring of VCC and GND are removed

2. Multiple functions: Nano or ESP32 development board are available as the control board and 15 sensors are
integrated. When the external power supply is connected, the DIP switch can be used to control the VCC voltage to
3.3V or 5V.

3. Simple structure: Use 6mm dual-pass copper pillars to connect the acrylic board.

4. High expansibility: VCC and GNG pins are provided

5. Programming learning: Arduino C language and graphical programming are available.

6.5.3 3. Parameters

• Working voltage: 5V or 3.3V

• DC power: 7-12V

• USB power: 5V

• Working current: 35mA

• Working temperature: –10°C ~ +65°C

6.5. ESP32 Inventor Learning Kit 17

ESP32 Starter Kit

18 Chapter 6. Product Introduction

ESP32 Starter Kit

6.5.4 4. Kit

Picture Components QTY

1 Keyestudio Expansion Board 1

2 Keyestudio ESP32 Development Board 1

3 Battery Holder 1

4 Servo 1

5 Slotted Screwdriver 1

6 Phillips Screwdriver 1

7 IR Remote Control 1

8 USB Cable 1

9 M2.5*6MM Round Head Screw 22

10 M2.5*9MM Dual-pass Copper Pillar 10

11 20CM F-F DuPont Wires 20

12 10CM F-F DuPont Wires 20

13 Acrylic Board 1

14 Rubber Pad 4

15 Potentiometer Cap 1

16 Red Button Cap 1

17 Green Button Cap 1

18 Yellow Button Cap 1

19 Blue Button Cap 1

6.5. ESP32 Inventor Learning Kit 19

ESP32 Starter Kit

20 Chapter 6. Product Introduction

CHAPTER

SEVEN

INSTALLATION STEPS

Step 1: Remove the protective film from the acrylic board.

Step 2: Stick the four rubber pads in the positioning circle under the acrylic board.

21

ESP32 Starter Kit

Step 3: Push the screws one by one through the holes from the bottom of the acrylic board (the side with rubber pad),
and then screw copper pillars onto them, as shown below.

22 Chapter 7. Installation Steps

ESP32 Starter Kit

Step 4: Align the holes on the expansion board with copper pillars. Do note whether the middle two holes are aligned.
If not, rotate the board to 180°. After adjustment, tighten the board with screws in place.

23

ESP32 Starter Kit

Step 5: Install the button caps and potentiometer caps.

24 Chapter 7. Installation Steps

ESP32 Starter Kit

Step 6: Install the development board. Pay attention to the position of USB interface, which is marked on the expansion
board.

25

ESP32 Starter Kit

26 Chapter 7. Installation Steps

CHAPTER

EIGHT

ARDUINO TUTORIAL

8.1 1.Install Development Software and Driver

8.1.1 1).Install Arduino IDEWindows

Arduino official websitehttps://www.arduino.cc/

Enter the website and click SOFTWARE to download the latest Arduino software:

Arduino boasts multiple versions such as Widows, mac and Linux(as shown below), please ensure that the one you
download is compatible with your computer.

27

https://www.arduino.cc/

ESP32 Starter Kit

Here, we will take Windows system as an example to introduce how to download and install it.

Two versions are provided for Windows: for installing and for downloading(a zipped file).

Click JUST DOWNLOAD to download the software.

28 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.1.2 2).Install Arduino IDEMac

Its download method is similar to the Windows.

8.2 2.Install Development Board and Driver

8.2.1 1).Windows System

Connect the control board to computer via USB. For Windows 10, the driver will be automatically installed. For
Windows 7 and others, you should install it manually.

USB-to-serial port chip of the board is CP2102, and we need to install it.

Download Link of CP2102 Driverhttps://fs.keyestudio.com/CP2102-WIN

Then will appear and unzip it. –

If the control board is connected to your computer for the first time, please click Computer–Attributes–Device Manager:

8.2. 2.Install Development Board and Driver 29

https://fs.keyestudio.com/CP2102-WIN

ESP32 Starter Kit

If the CP2102 driver is not installed successfully, there is a yellow exclamation mark, tap

and “Update drive. . .” to update the driver.

30 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Click “Browse my computer for drivers”

8.2. 2.Install Development Board and Driver 31

ESP32 Starter Kit

Enter“Browse. . .” to find the folder , and tap “Next”.

32 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Close the page after installation, and then the serial port number appears.

8.2. 2.Install Development Board and Driver 33

ESP32 Starter Kit

Finally, click Computer–Attributes–Device Manager:

34 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.2.2 2).MAC System

Link: https://wiki.keyestudio.com/How_to_Install_the_Driver_of_CP2102_on_MAC_System

8.3 3.Install the Development Board

Link for the ESP32 Development Boardhttps://docs.espressif.com/projects/arduino-esp32/en/latest/getting_started.
html#about-arduino-esp32

8.3.1 1). Windows System

Open the Arduino IDE

8.3. 3.Install the Development Board 35

https://wiki.keyestudio.com/How_to_Install_the_Driver_of_CP2102_on_MAC_System
https://docs.espressif.com/projects/arduino-esp32/en/latest/getting_started.html#about-arduino-esp32
https://docs.espressif.com/projects/arduino-esp32/en/latest/getting_started.html#about-arduino-esp32

ESP32 Starter Kit

Click Tools→Board→ ESP32(we need to install it)

Installation Steps of the ESP32
Tap “FilePreferences”add the link“ https://espressif.github.io/arduino-esp32/package_esp32_index.json” in Addi-
tional boards manager URLs and click OK.

36 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Select the icon to open the the board options

Search for ESP32 In the search box and click Install

8.3. 3.Install the Development Board 37

ESP32 Starter Kit

Choose the corresponding port

38 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.3.2 2).MAC System

The setting method of Arduino IDE resembles that of Windows. The only difference is COM port:

Tap Arduino IDE Preferencesadd the link“ https://espressif.github.io/arduino-esp32/package_esp32_index.json” in
Additional boards manager URLs and click OK.

8.3. 3.Install the Development Board 39

ESP32 Starter Kit

Search for ESP32 In the search box and click Install

40 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

If you use an Apple laptop, slid the scroll bar on the right to the bottom, and the **“INSTALL” ** installation button
can’t be displayed, you need to adjust the “Interface scale” of the Arduino IDE.

8.3. 3.Install the Development Board 41

ESP32 Starter Kit

Click “Arduino IDE Preferences Interface scale” to select the appropriate size until you see the “INSTALL” button.

42 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.4 4.Install Libraries

8.4.1 1).What are Libraries?

A library is a collection of codes, and it facilitates the connection of sensors, displays and modules.

For instance, the LiquidCrystal library simplifies the communication with LCD display. Moreover, hundreds of libraries
are available on Internet. In the reference, in-built and manually-added libraries are listed.

8.4. 4.Install Libraries 43

ESP32 Starter Kit

8.4.2 2).How to Install the Libraries?

Tap Sketch>Include Library>Add .Zip Library. . .

Select the zipped files you need and click ok to add a library. If success, the message bar will show “Library installed”.

For more tutorials, please visit our official websitehttps://www.keyestudio.com/

44 Chapter 8. Arduino Tutorial

https://www.keyestudio.com/

ESP32 Starter Kit

8.5 Arduino Project

8.5.1 Download the Arduino code files and library files

Click on the link to download the arduino code file and library file:Download-Arduino-Codes-and-Libraries

8.5.2 Project 1: LED Blinking

1. Description

LED blinking is a simple project designed for starters. You only need to install an LED on Arduino board and upload
the code on Arduino IDE. This project reinforces the lear ning of Arduino conceptual framework and using methods
for starters.

2. Working Principle

LED: The above is the circuit diagram of LED. Generally speaking, limited IO ports of output current may cause low
brightness of LED, so a NPN triode (Q2) is applied in circuit as a switch. In this case, the LED will light up if the
base(pin 1) of triode is at a high level. On the contrary, LED goes off when the base is at low.

Triode switch: To have a clear idea of its principle, certain knowledge of electronic circuit is required. For details,
please consult materials by yourself. Briefly, LED on and off rely on the high and low levels of triode base, which are
decided by the pin on the development board. LED lights up when the base(pin 1) is at a high level, and it goes off
when the base is at low.

8.5. Arduino Project 45

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

According to previous principles, we can control LED via levels of ESP32 pins.

1. Define an variable as pin IO5 used for pin number modification.

2. Set pin IO5 to output mode in setup().

3. Set pin IO5 to output “HIGH” and “LOW” and delay for 1s respectively.

4. As a result, LED will be on and off for 1s.

/*
keyestudio ESP32 Inventor Learning Kit
Project 1: LED Blinking
http://www.keyestudio.com

*/
int ledPin = 5; //Define LED to connect with pin IO5
void setup() {

pinMode(ledPin, OUTPUT);//Set the mode to output
}

(continues on next page)

46 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

void loop() {
digitalWrite(ledPin, HIGH); //Output a high level, LED lights up
delay(1000);//Delay 1000ms
digitalWrite(ledPin, LOW); //Output a low level, LED goes off
delay(1000);

}

5. Test Result

After uploading the code and powering on, LED will light up for 1s and off for 1 s.

6. Code Explanation

setup()Function: It is used to initialize variables and pin modes and to enable the library. It runs once only after each
time the board powering on or being reset.

loop()Function: Followed by setup(), loop()function perpetually executes its code, such as read the pin or output the
pin.

int ledPin = 3: “int” is a variable within range of -32768 ~ 32767. This example code means we define an variable
ledpin with an assignment of 5. Therefore, we adopt ledpin rather than “5” in later steps, which largely simplifies
experimental recordings when considerable sensors and pins are included.

pinMode(pin,mode):“pin” is the pin number of mode setting. And the “mode” is optional for INPUT, OUTPUT, and
INPUT_PULLUP. Here we set pin 3 to output mode.

digitalWrite(pin, value): “pin” is the digital tube pin of MCU, and here we define as pin 5. “value” is the digital output
level (HIGH/LOW). If we apply pinMode() to set pin to OUTPUT, its voltage should be modified correspondingly. For
instance, 5V (it is 3.3V if on a 3.3V-board) corresponds to HIGH, while 0V (GND) is for LOW.

However, if LED links with the pin rather than setting pinMode() to OUTPUT, LED may become dim when recalling
digitalWrite(HIGH). This is because digitalWrite() enables the inner pull-up resistor, whose function is similar to a
great current-limiting resistor.

delay(ms) :It is a delay function and “ms” is the delay time in micro seconds.

For more Arduino grammar explanations, please refer to: https://www.arduino.cc/reference/en/

8.5.3 Project 2: Breathing LED

1. Description

Arduino breathing led utilizes on-board programmable PWM to output analog waveform. After powering on, LED
brightness can be adjusted through duty cycle of the waveform to eventually realize the effect of breathing led. In this
way, ambient light can be simulated by changing LED brightness over time. Also, breathing led can form a colorful
mini light to construct a tranquil and warm environment.

8.5. Arduino Project 47

https://www.arduino.cc/reference/en/

ESP32 Starter Kit

2. What is PWM?

PWM controls analog output via digital means, which is able to adjust duty cycle of the wave (a signal circularly shifting
between high level and low level).

For Arduino, digital ports of voltage output are LOW and HIGH, which respectively correspond to 0V and 5V. Gener-
ally, we define LOW as 0 and HIGH as 1. Arduino will output 500 signals of 0 or 1 within 1s. If they are “1”, 5V will
be output. Oppositely, if they are all 0, the output will be 0V. Or if they are 010101010101. . . , the average output will
be 2.5V.

In other words, output ratio of 0 and 1 affects the voltage value, the more 0 and 1 signals are output per unit time, the
more accurate the control will be.

The GPIO34, 35, 36, and 39 of ESP32 cannot use PWM.

48 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

We adopt “for” statement to increase a variable from 0 to 255, and define the variable as PWM output (analogWrite(pin,
value)). By the way, a delay time may reinforce the control of LED shining time. Next, we use another “for” statement
to decrease it from 255 to 0 with a delay time to control LED dimming process.

/*
keyestudio ESP32 Inventor Learning Kit
Project 2: Breathing LED
http://www.keyestudio.com

*/
#define PIN_LED 5 //define the led pin
#define CHN 0 //define the pwm channel
#define FRQ 1000 //define the pwm frequency
#define PWM_BIT 8 //define the pwm precision
void setup() {
ledcSetup(CHN, FRQ, PWM_BIT); //setup pwm channel
ledcAttachPin(PIN_LED, CHN); //attach the led pin to pwm channel

}

void loop() {
(continues on next page)

8.5. Arduino Project 49

ESP32 Starter Kit

(continued from previous page)

for (int i = 0; i < 255; i++) { //make light fade in
ledcWrite(CHN, i);
delay(10);

}
for (int i = 255; i > -1; i--) { //make light fade out
ledcWrite(CHN, i);
delay(10);

}
}

5. Test Result

After uploading the code, we can see that the LED dims gradually rather than all of a sudden. It “breathes” evenly.

6. Code Explanation

#define: It is used to define constants (unchanged)

ledcSetup(): It is used to set the frequency and count bits corresponding to the LEDC channel (duty ratio resolution)

The first parameter chan represents the channel number, which ranges from 0 to 15, and can set 16 channels. The high-
speed channel (0 ~ 7) is driven by 80MHz clock, and the low-speed channel (8~ 15) is driven by 1MHz clock. The
second parameter freq is the desired frequency. The third parameter is the count number of duty ratio resolution, which
ranges from 0 to 20. (This value determines the writable value of duty ratio in the ledcWrite method. For example, if
the value is 10, the maximum value of duty ratio is 1023, that is, (1<<bit_num)-1.

double ledcSetup(uint8_t chan, double freq, uint8_t bit_num)

ledcAttachPin(): Its function is to bind the specified LEDC channel to the specified IO port to achieve PWM output.

The pin represents the IO port we want to output, and the channel is the LEDC channel we specify.

void ledcAttachPin(uint8_t pin, uint8_t channel);

ledcWrite(): Its function is the output duty cycle of the specified LEDC channel.

The chan is the LEDC channel we specify. The duty means duty cycle, whose range depends on the bit_num of the
ledcSetup() function.

void ledcWrite(uint8_t chan, uint32_t duty)

for (int i = 0; i <= 255; i ++){ . . . }: It indicates that variable i ranges from 0 to 255, i++ means i increments by 1 each
time until the judgment expression i <= 255 is not satisfied. Otherwise, the code in braces is executed for 256 times in
total.

for (int i = 255; i >= 0; i –){ . . . }, i– indicates that i is reduced by 1 each time. If i>= 0 is not satisfied, the for() loop
is jumped out, and 256 times are executed in total.

i++ : The variable will add 1 per loop

For more details, please refer to the link:https://www.arduino.cc/reference/en/

50 Chapter 8. Arduino Tutorial

https://www.arduino.cc/reference/en/

ESP32 Starter Kit

8.5.4 Project 3SOS Distress Device

1. Description

Arduino SOS device is able to emit distress signals, which coincides with the principle of Morse code. It is convenient
for emergencies.

2. Wiring Diagram

3. Test Code

What we should clear firstly is how SOS distress light blinks: LED quickly blinks 3 times for “S” and slowly blinks
3times for “O”. And then, we control the blinking times and duration via “for” statement and set interval time among
letters.

/*
keyestudio ESP32 Inventor Learning Kit
Project 3SOS Distress Device
http://www.keyestudio.com

*/
int ledPin = 5; //Define pin as IO5

(continues on next page)

8.5. Arduino Project 51

ESP32 Starter Kit

(continued from previous page)

void setup() {
pinMode(ledPin, OUTPUT);
}

void loop() {
//Three quickly blinks mean “S”
for(int x=0;x<3;x++){
digitalWrite(ledPin,HIGH); //Set LED to light up
delay(150); //Delay 150ms
digitalWrite(ledPin,LOW); //Set LED to turn off
delay(100); //Delay 100ms
}

//delay 200ms to generate the space between letters
delay(200);

//Three slowly blinks mean “O”
for(int x=0;x<3;x++){
digitalWrite(ledPin,HIGH); //Set LED to light up
delay(400); //Delay 400ms
digitalWrite(ledPin,LOW); //Set LED to turn off
delay(200); //Delay 200ms
}

//Delay 100ms to generate the space between letters
delay(100);

// Three quickly blinks mean “S”
for(int x=0;x<3;x++){
digitalWrite(ledPin,HIGH); //Set LED to light up
delay(150); //Delay 150ms
digitalWrite(ledPin,LOW); //Set LED to turn off
delay(100); //Delay 100ms
}
// Wait 5s before repeating S.0.S
delay(5000);
}

4. Test Result

After the code is successfully uploaded, we can see that the LED flashes 3 times quickly, then slowly flashes 3 times
and then flashes 3 times quickly, then flash again 5s later.

52 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.5.5 Project 4: Traffic Light

1. Description

The traffic light module is a device used to control the route of pedestrians and vehicles. It includes a red, a yellow and
a green light, which implies different instructions.

Red for Stop: Pedestrians and vehicles stop proceeding.

Yellow for Caution: Pedestrians and vehicles are ready for stopping. If the drive is already in process, the speed should
be slow.

Green for Proceed: Pedestrians and vehicles keep going with the abidance of traffic regulations.

In this project, you can use Arduino to write code to control traffic lights. For instance, set the duration of each lights
and the interval time among them. Besides, you may also add a timer to alter light colors to schedule.

2. Wiring Diagram

8.5. Arduino Project 53

ESP32 Starter Kit

3. Test Code

We simply stimulate the traffic lights: green LED lights up for 5s, yellow LED blinks for 3 times, and red LED lights
up for 5s. And we set this to loop. The blinking of yellow LED can utilize for()statement we have mentioned in project
3. Thus, we only need to set the lighting time to complete a traffic light.

/*
keyestudio ESP32 Inventor Learning Kit
Project 4 Traffic Light
http://www.keyestudio.com

*/
int greenPin = 27; //Green LED connects to IO27
int yellowPin = 26; //Yellow LED connects to IO26
int redPin = 25; //Red LED connects to IO25
void setup() {
//Set all LED interfaces to output mode
pinMode(greenPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(redPin, OUTPUT);

}

void loop() {
digitalWrite(greenPin, HIGH); //Light green LED up
delay(5000); //Delay 5s
digitalWrite(greenPin, LOW); //Turn green LED off
for (int i = 1; i <= 3; i++) { //Execute for 3 times

digitalWrite(yellowPin, HIGH); //Light yellow LED up
delay(500); //Delay 0.5s
digitalWrite(yellowPin, LOW); // Turn yellow LED off
delay(500); //Delay 0.5s

}
digitalWrite(redPin, HIGH); //Light red LED up
delay(5000); //Delay 5s
digitalWrite(redPin, LOW); //Turn red LED off

}

4. Test Result

After uploading the code, green LED will light up for 5s, yellow LED will blink for 3 times, and red LED will light up
for 5s, in circulation.

8.5.6 Project 5Rainbow Ambient Light

1. Description

Arduino 2812RGB LED is a programable colorful dreamy light, whose color, brightness and rhythm are adjustable.
This rainbow ambient light can be used as a dynamic decoration at will. Or you may control it to “dance with music”.
Importantly, it can be improved as an alarm. Its built-in sensor detects the ambient surroundings to warn users by
changing its color, brightness and rhythm.

54 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Working Principle

The data protocol adopts communication mode of single-line return-to-zero code. After the pixel is reset on power,
DIN terminal receives data from the controller. The firstly arriving 24bit data will be extracted by the first pixel and be
sent to the inner data register.

Remaining data will be amplified by an amplification circuit and be transmitted through DOUT port to the next cascaded
pixel. Being transmitted through pixels, the signal decreases 24bit each time.

Besides, The pixel adopts automatic shaping and forwarding technology, insomuch that the cascade number of the pixel
is only limited by the signal transmission speed.

8.5. Arduino Project 55

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Before uploading the code, please ensure the library file is loaded to arduino IDE.

/*
keyestudio ESP32 Inventor Learning Kit
Project 5.1 Rainbow Ambient Light
http://www.keyestudio.com

*/
//Add 2812RGB library file
#include <NeoPixel_ESP32.h>

#define PIN 15

Adafruit_NeoPixel strip = Adafruit_NeoPixel(6, PIN); //Defines the instance strip and␣
→˓assigns the RGB LED number pins to the library code

void setup() {
strip.begin(); //Activate RGB LED
strip.show(); // Refresh the display

}
(continues on next page)

56 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

void loop() {
strip.setPixelColor(0, strip.Color(255, 0, 0)); //The frist RGB LED is red
strip.setPixelColor(1, strip.Color(0, 255, 0)); //The second RGB LED is green
strip.setPixelColor(2, strip.Color(0, 0, 255)); //The third RGB LED is blue
strip.setPixelColor(3, strip.Color(255, 255, 0)); //The fourth RGB LED is yellow
strip.setPixelColor(4, strip.Color(255, 0, 255)); //The fifth RGB LED is purple
strip.setPixelColor(5, strip.Color(255, 255, 255)); //The sixth RGB LED is white
strip.show(); //Refresh the display
delay(100); //Give a delay to save the stability of the display

}

5. Test Result

After uploading the code, wiring up and powering on, the LED will light up in different colors.

6. Extended Code

Specifically, we replace RGB value with variables. And then we control these variables to form an expected light show.

The wirings remain unchanged.

/*
keyestudio ESP32 Inventor Learning Kit
Project 5.2 Rainbow Ambient Light
http://www.keyestudio.com

*/
//Add 2812RGB library file
#include <NeoPixel_ESP32.h>

#define PIN 15

Adafruit_NeoPixel strip = Adafruit_NeoPixel(6, PIN, NEO_GRB + NEO_KHZ800);

void setup() {
strip.begin();
strip.show(); // Initialize all pixels to 'off'

}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green

(continues on next page)

8.5. Arduino Project 57

ESP32 Starter Kit

(continued from previous page)

colorWipe(strip.Color(0, 0, 255), 50); // Blue
// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {

strip.setPixelColor(i, c);
strip.show();
delay(wait);

}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));

}
strip.show();
delay(wait);

}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));

}
strip.show();
delay(wait);

}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on

}

(continues on next page)

58 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every third pixel on

}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}
}

}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}

}

8.5. Arduino Project 59

ESP32 Starter Kit

7. Code Explanation

#include <NeoPixel_ESP32.h> : Libraries are included, so that codes in library can be directly recalled.

Adafruit_NeoPixel strip = Adafruit_NeoPixel(6, PIN); Define an instance strip and set the number of RGB. Here we
input 6.

PIN = 15

strip.begin(); Initialize 2812RGB

strip.setPixelColor(uint16_t n, uint8_t color); The uint16_t m is used to set the number of 2812RGB and the second
parameter is the value of the displayed color.

strip.Color(uint8_t red , uint8_t green , uint8_t blue);Set the color function. The value range of the three parame-
ters(red, green and blue) is (0-255). We can synthesize various colors by setting the values of the three colors.

strip.show(); Display 2812RGB

8.5.7 Project 6Water Flow Light

1. Description

This simple water flow light project enables to help you learn electronic packaging. In this project, we will control
LEDs to change the color in a specified speed via a Arduino board.

60 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Wiring Diagram

3. Test Code

A water flow light means that LED lights go from left to right and then from right to left. In this experiment, we use
continuous pins, so that “for” statement can be utilized not only to set output mode (replace pins with circular variable
in code) but to output.

/*
keyestudio ESP32 Inventor Learning Kit
Project 6 Water Flow Light
http://www.keyestudio.com

*/
void setup() {
for(int i = 12;i <= 15 ;i++){ //Use "for" loop statement to set IO12-IO15 pin to␣

→˓output mode
pinMode(i,OUTPUT);

}
}

void loop() {
for(int i = 12; i <= 15; i++){ //Use "for" loop statement to light up␣

→˓LED on IO12-IO15 pin in sequence
(continues on next page)

8.5. Arduino Project 61

ESP32 Starter Kit

(continued from previous page)

digitalWrite(i,HIGH);
delay(200);
digitalWrite(i,LOW);

}
for(int i = 15; i >= 12; i--){ //Use "for" loop statement to light up␣

→˓LED on IO15-IO12 pin in sequence
digitalWrite(i,HIGH);
delay(200);
digitalWrite(i,LOW);

}

}

4. Test Result

After uploading code and powering on, the LEDs go from left to right and then from right to left

6. Code Explanation

for(int i = 12;i <= 15 ;i++){ pinMode(i,OUTPUT); } : We can use “for” statement to define continuous pins. Yet it
features a disadvantage of non-replacement ability of pins, which deteriorates the code portability.

for(int i = 12; i <= 15; i++){ digitalWrite(i,HIGH); delay(200); digitalWrite(i,LOW); }
In the first loop, LED on IO12 pin will light up and off after a 200ms delay. At the second time, LED on IO13 pin will
turn on and off also after a 200ms delay. Until the IO15 pin is extinguished and the for loop is popped out, and the
second for loop is the same except from IO15 pin to IO12 pin.

8.5.8 Project 7 Active Buzzer

1. Description

An active buzzer is a component used as an alarm, a reminder or an entertaining device, which boasts a reliable sound.
What’s more, it empowers to stimulate highly controllable sounds, making our projects more interesting.

62 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Working Principle

An active buzzer integrates a multi-vibrator, so it makes sound only via DC voltage. Pin 1 of the buzzer connects to
VCC and pin 2 is controlled by a triode. When a high level is provided for the base (pin 1) of the triode, its collector
(pin 3) and emitter (pin 2) link to GND, and then the buzzer emits sound. Oppositely, if we offer a low level to the base,
the rest of pins will be disconnected, so the buzzer will remain quiet.

8.5. Arduino Project 63

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

If the development board outputs a high level, the buzzer will emit sound. If it outputs a low level, the buzzer will stop
ringing. Thus, its code is similar to light up an LED.

/*
keyestudio ESP32 Inventor Learning Kit
Project 7 Active Buzzer
http://www.keyestudio.com

*/
int buzzer = 5; //Define buzzer connected to IO5 pin
void setup() {

pinMode(buzzer, OUTPUT);//Set the output mode
}

void loop() {
digitalWrite(buzzer, HIGH); //IO5 pin outputs a high level to cause the buzzer to emit␣

→˓sound
delay(1000); //Delay 1000ms
digitalWrite(buzzer, LOW); //IO5 outputs a low level to prevent the buzzer to emit␣

→˓sound
(continues on next page)

64 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

delay(1000);
}

5. Test Result

After uploading code and powering on, the buzzer emits sound for 1s and stays quiet for 1s.

8.5.9 Project 8Music Performer

1. Description

In this project, we will use a power amplifier speaker to play music. This speaker can not only play simple songs, but
also perform what you desire. Thus, you can program other interesting codes in the project to accomplish splendid
learning outcomes.

2. Working Principle

The electrical signal is input from pin 1 of RP1 (adjusts signal intensity, which is also the sound volume). After coupling
in C4 and passing R5, the signal reaches IN- pin of 8002B, in which it is operationally amplified and output to BEE1
speaker.

Frequency Comparison Table in C

Note Frequency(Hz) Note Frequency(Hz) Note Frequency(Hz)
Flat 1 Do 262 Natural 1 Do 523 Sharp 1 Do 1047
Flat 2 Re 294 Natural 2 Re 587 Sharp 2 Re 1175
Flat 3 Mi 330 Natural 3 Mi 659 Sharp 3 Mi 1319
Flat 4 Fa 349 Natural 4 Fa 698 Sharp 4 Fa 1397
Flat 5 So 392 Natural 5 So 784 Sharp 5 So 1568
Flat 6 La 440 Natural 6 La 880 Sharp 6 La 1760
Flat 7 Si 494 Natural 7 Si 988 Sharp 7 Si 1967

8.5. Arduino Project 65

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

According to the comparison table, we set a pin to output mode. And we use function “tong(Pin , frequency);” to
generate square waves in certain frequency to emit corresponding sound. Finally, the notes will be output after adding
a delay time.

/*
keyestudio ESP32 Inventor Learning Kit
Project 8.1 Music Performer
http://www.keyestudio.com

*/
int beeppin = 5; //Define the speaker pin to IO5
void setup() {
pinMode(beeppin, OUTPUT);//Define the IO5 port to output mode

}

void loop() {
tone(beeppin, 262);//Flat DO plays 500ms
delay(500);
tone(beeppin, 294);//Flat Re plays 500ms
delay(500);

(continues on next page)

66 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

tone(beeppin, 330);//Flat Mi plays 500ms
delay(500);
tone(beeppin, 349);//Flat Fa plays 500ms
delay(500);
tone(beeppin, 392);//Flat So plays 500ms
delay(500);
tone(beeppin, 440);//Flat La plays 500ms
delay(500);
tone(beeppin, 494);//Flat Si plays 500ms
delay(500);
noTone(beeppin);//Stop for 1s
delay(1000);

}

5. Test Result

After uploading code and powering on, the amplifier circularly plays music tones with corresponding frequency: DO,
Re, Mi, Fa, So, La, Si.

Power amplifier sound adjustment
**There is a potentiometer next to the speaker. We can adjust the sound of the speaker by twisting it. ** (Note: Please
use appropriate strength to adjust it, so as not to break the potentiometer)

6. Knowledge Expansion

Let’s play a birthday song. The wirings remain unchanged.

Numbered musical notation:

8.5. Arduino Project 67

ESP32 Starter Kit

Comparison Diagram of Flat, Natural and Sharp

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 8.2 Music Performer
http://www.keyestudio.com

*/
int beeppin = 5; //Define the speaker pin to IO5
// doremifasolasi
int doremi[] = {262, 294, 330, 370, 392, 440, 494, //Falt 0-6

523, 587, 659, 698, 784, 880, 988, //Natural 7-13
1047,1175,1319,1397,1568,1760,1967}; //Sharp 14-20

int happybirthday[] = {5,5,6,5,8,7,5,5,6,5,9,8,5,5,12,10,8,7,6,11,11,10,8,9,8}; //Find␣
→˓the number in arrey doremi[] according to the numbered musical notation
int meter[] = {1,1,2,2,2,4, 1,1,2,2,2,4, 1,1,2,2,2,2,2, 1,1,2,2,2,4}; // Beats

void setup() {
pinMode(beeppin, OUTPUT); //Set IO5 pin to output mode

}

void loop() {
for(int i = 0 ; i <= 24 ;i++){ //i<=24, because there are only 24 tones in this␣

→˓song
//Use tone()function to generate a waveform in "frequency"

tone(beeppin, doremi[happybirthday[i] - 1]);
delay(meter[i] * 200); //Wait for 1000ms
noTone(beeppin);//Stop singing
}

}

68 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

7. Code Explanation

doremi[]{ . . . }; Linear array is used to store data, which generally are considered as a series of variables of the same
type. Analogically, data are neatly put in ordered boxes, so that we can take the sequenced numbers to use corresponding
data.

tone(pin, frequency) “pin” is the arduino pin generating tones in a total of 6 pins. “frequency” is the note frequency
in the unit of Hz.

unsigned int is the data type within range of 0 ~ 65, 535 ((2^16) - 1).

1. “tone” function controls the module to generate square waves in certain frequency(duty cycle of 50). It sings
until “noTone()”(Stop to sing) is activated.

2. Tones can be emitted by connecting the pin to a piezoelectric buzzer or other speakers.

3. For each time, tone() generates only one type of tone. Thus, if a tone is played on some pins, this function will
be invalid.

4. tone()function disturbs the PWM output on pin 3 and pin 11 (on any board excluding Mega).

5. The sound frequency generated by tone() must be more than 31Hz. So when you play tones in different frequency
on numerous pins, noTone() is necessary on one pin and followed by tone() on next pin.

noTone(beeppin); It stops the tone generation(stops singing). You can directly add the pin number.

8.5.10 Project 9Digital Tube Display

1. Description

This 4-Digit tube display is a device used to display counting or time, which is able to display numbers from 0 ~ 9 and
simple letters. It consists of four digital tubes, each of which has seven light-emitting diodes (LED).

Moreover, multiple functions can be realized by connecting their pins to the Arduino development board, such as
timekeeping and some game storing.

8.5. Arduino Project 69

ESP32 Starter Kit

2. Working Principle

TM1650 utilizes IIC protocol and adopts two bus lines (SDA and SCL).

Data Command: 0x48. This command tells TM1650 to light up the digital tubes rather than key scanning.

Display Command:

70 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Actually, it is one byte of data with different bits representing different functions. bit[6:4]: Set the brightness of LED.
Note that 000 indicates the brightest. bit[3]: Determine whether there is a decimal dot. bit[0]: Determine whether to
turn on the display.

Digital Tube Turns on Take an example: Level 8 brightness without a dot signifies 0x05. Steps: Starting signal —
Send 0x48 — Slave-device receives — Send 0x05 — Slave-device receives — Ending signal After turning on, there
is no need to repeatedly send 0x48, as the function of digital tube has confirmed. Besides, the brightness and display
methods can be enumerated with multiple data in one place, so that it is clear and space-saving.

Digital Tube Turns off Steps: Starting signal — Send 0x48 — Slave-device receives — Send 0x00 — Slave-device
receives — Ending signal

Digital Tube Displays Numbers We firstly tell TM1650 to display numbers on the predetermined tube. And then the
number will be displayed. Its eight bit corresponds to eight segment, with 1 for lighting up and 0 for lighting off. If
there is a doubt of the corresponding relation, you may light up bit by bit in loop.

For example, when bit 1 is turned on and displays 8, the data is 0x68. If there is a dot, 8 will also be displayed when
sending 0x7f. Steps: Starting signal — Send 0x68 — Slave-device receives — Send 0x7f — Slave-device receives —
Ending signal Result: 8 is displayed on Bit 1.

For convenience, an array of corresponding value to 0~9 can be made. After further improvement, it is able to display
numbers, adjust brightness, shift the decimal dot and tubes.

8.5. Arduino Project 71

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Upload library files on Arduino IDE firs.

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 9.1 Digital Tube Display
http://www.keyestudio.com

*/
#include "TM1650.h"
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
for(char b=0;b<4;b++){
DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.

}
}

(continues on next page)

72 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

void loop(){
DigitalTube.displayFloatNum(9999); //Values or variables added to the parentheses␣

→˓can be displayed through the digital tube
}

5. Test Result

After connecting the wiring and uploading code, the digital tube display shows “9999”, as shown below.

**6. Extended Code **

Let’s have some difficult operations. Rather than static numbers, we handle it to show some dynamic ones. The
following code manipulates the tubes to display 1~9999 by “for” loop.

The wiring remains unchanged.
Code:

/*
keyestudio ESP32 Inventor Learning Kit
Project 9.2 Digital Tube Display
http://www.keyestudio.com

*/
#include "TM1650.h"
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

void setup(){
for(char b=0;b<4;b++){
DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.

}
}

void loop(){
for(int num=0; num<10000; num++){ //If num is less than 10000, num will increase by␣

→˓1 for each cycle
DigitalTube.displayFloatNum(num); //Values or variables in the parentheses can be␣

→˓displayed through the digital tube
(continues on next page)

8.5. Arduino Project 73

ESP32 Starter Kit

(continued from previous page)

delay(100);
}

}

7. Code Explanation

TM1650 DigitalTube(CLK,DIO); Create an example for DigitalTubeand import the pin number connecting CLK to
DIO into the code.

DigitalTube.clear(); Clear the display

DigitalTube.displayFloatNum(num); This is the digital tube display function, the maximum number is 9999.

8.5.11 Project 10Dot Matrix Display

1. Description

This module consists of a 8x8 LED dot matrix with one control pin for each row as well as each column to adjust
the brightness of LED. Connecting with Arduino board, the brightness of LED is controlled to display characters and
figures via Arduino programming. In this way, simple characters, numbers and figures are able to be displayed. It also
can be applied in game machines or screens.

2. Working Principle

MAX7219 is an IC with SPI communication and can be used to control the 8x8 dot matrix. The MAX7219 SPI
communication has integrated in our libraries and you can recall directly.

Dot Matrix Modulo Operation

Click the link for Modulo http://dotmatrixtool.com/#

Steps:
1.Click the link and set the height and width of the dot matrix. Here we set both to 8.

74 Chapter 8. Arduino Tutorial

http://dotmatrixtool.com/#

ESP32 Starter Kit

8.5. Arduino Project 75

ESP32 Starter Kit

2.Set “Byte Order” to “Column Major”.

76 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3.Set “Endian” to “Big Endian”.

4.Click the white tiles to form a pattern you want(click again for deselecting), and then click “Generate” to gen-
erate an array for this icon. Copy this array and paste it in code, and then the pattern will be displayed on the dot

8.5. Arduino Project 77

ESP32 Starter Kit

matrix.

78 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Add libraries to Arduino IDE first.

/*
keyestudio ESP32 Inventor Learning Kit
Project 10 Dot Matrix Display
http://www.keyestudio.com

*/

#include "LedControl.h"
int DIN = 23;
int CLK = 18;
int CS = 15;
LedControl lc=LedControl(DIN,CLK,CS,1);
const byte IMAGES[8] = {0x30, 0x78, 0x7c, 0x3e, 0x3e, 0x7c, 0x78, 0x30};

void setup() {
lc.shutdown(0,false);
// Set brightness to a medium value
lc.setIntensity(0,8);

(continues on next page)

8.5. Arduino Project 79

ESP32 Starter Kit

(continued from previous page)

// Clear the display
lc.clearDisplay(0);

}

void loop(){
for(int i=0; i < 8; i++){

lc.setRow(0,i,IMAGES[i]);
}

}

5. Test Result

After connecting the wiring and uploading code, a heart will be displayed on the dot matrix, as shown below.

6. Code Explanation

lc.shutdown(0,false); Select the state of power saving mode, with false for exiting and true for entering. It will not
display anything if entering this mode.

lc.setIntensity(0,8); Set the range of brightness intensity to level 0-8, among which 8 is the brightest.

lc.clearDisplay(0); Clear the pattern displayed on the dot matrix.

lc.setRow(0,i,IMAGES[i]); It is a dot matrix display function, the first parameter is the address of the display we set
to 0, the second parameter is the display line, we use for loop variable (0-7), the third parameter is to set the value of
the dot call array displayed in the dot matrix row.

80 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.5.12 Project 11: LCD

1. Description

Arduino I2C 1602 LCD is a commonly-used auxiliary device for MCU development board to connect with external
sensors and modules. It features a 16-bit wide character, 2-line LCD screen and adjustable brightness. This programable
module is convenient for data editing, display and management . Besides, it can display not only characters and figures
but sensors value, like temperature, humidity or pressure value.

As a result of its usability, the display is wildly applied in many fields, including smart home products, industrial
monitoring systems, robot control systems and automotive electronics systems.

2. Working Principle

It is the same as IIC communication principle. Underlying functions have been packaged in libraries so that you can
recall them directly. If you are interested in these, you may have a further look of underlying driving principles.

8.5. Arduino Project 81

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Add libraries to Arduino IDE first.

/*
keyestudio ESP32 Inventor Learning Kit
Project 11 LCD
http://www.keyestudio.com

*/
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2); // set the LCD address to 0x27 for a 16 chars and 2␣
→˓line display
void setup()
{
lcd.init(); // initialize the lcd
// Print a message to the LCD.
lcd.backlight(); //Turn on the LCD backlight
lcd.setCursor(2,0); //Set the display position
lcd.print("Hello,world!"); //LCD displays "Hello, world!"
lcd.setCursor(2,1);

(continues on next page)

82 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

lcd.print("keyestudio!"); //LCD displays "keyestudio!"
}
void loop()
{
}

5. Test Result

After connecting the wiring and uploading code, turn on the LCD, “Hello, world!” and “keyestudio!” will be displayed
on the LCD.

If the characters are unclear, please fix the backlight potentiometer by the small slotted screwdriver(Please use appro-
priate force to adjust. Connect an external power supply if necessary.

8.5. Arduino Project 83

ESP32 Starter Kit

6. Code Explanation

#include <LiquidCrystal_I2C.h> #include is a “include” command of libraries, so we can recall functions in file.h.

LiquidCrystal_I2C lcd(0x27,16,2); Define an LCD. 0x27 is its IIC address, and 16 means the number of
columns(display 16 characters in total), and 2 is the number of rows.

lcd.init(); Initialize LCD

lcd.backlight(); Turn on LCD backlight, which clarifies the displayed characters.

lcd.setCursor(3,0); Set the display position. (3,0) indicates the the beginning of column 3, row 0.

lcd.print(“Hello, world!”); Define the displayed characters. Enclose the strings in quotation marks, for instance,
lcd.print(“Hello, world!”). The marks can be omitted if displaying one value, for example, lcd.print(value).

8.5.13 Project 12: Servo

1. Description

This servo features high performance and high precision with a maximum rotation angle of 180°. Weighting only 9g,
it is perfectly suitable for any mini device in multiple occasions. What’s more, it enjoys short startup time, low noise
and strong stability.

2. Working Principle

Angle range: 180° (360°, 180° and 90°)

Drive voltage: 3.3V or 5V

Pin: Three wires

GND: Grounded(brown)

VCC: A red pin that connects to a +5v (3.3V) power

S: A orange signal pin that controlled via PWM signal

84 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Control Principle: The rotation angle is controlled via duty cycle of PWM. Theoretically, standard PWM cycle is
20ms(50Hz), so pulse width should distribute within 1ms~2ms. However, the actual pulse width reaches 0.5ms~2.5ms,
which corresponds to 0°180°. Pay attention that, for the same signal, the rotation angle may vary from servo brands.

3. Wiring Diagram

8.5. Arduino Project 85

ESP32 Starter Kit

4. Test Code

Add libraries to Arduino IDE first.

/*
keyestudio ESP32 Inventor Learning Kit
Project 12 Servo
http://www.keyestudio.com

*/
int servoPin = 4;//servo PIN

void setup() {
pinMode(servoPin, OUTPUT);//servo pin is set to output

}

void loop() {
for(int i = 0 ; i <= 180 ; i++) {
servopulse(servoPin, i);//Set the servo to rotate from 0° to 180°
delay(10);//delay 10ms
}
for(int i = 180 ; i >= 0 ; i--) {
servopulse(servoPin, i);//Set the servo to rotate from 180° to 0°
delay(10);//delay 10ms
}

}

void servopulse(int pin, int myangle) { //Impulse function
int pulsewidth = map(myangle, 0, 180, 500, 2500); //Map Angle to pulse width
for (int i = 0; i < 10; i++) { //Output a few more pulses
digitalWrite(pin, HIGH);//Set the servo interface level to high
delayMicroseconds(pulsewidth);//The number of microseconds of delayed pulse width␣

→˓value
digitalWrite(pin, LOW);//Lower the level of servo interface

}
}

5. Test Result

After connecting the wiring and uploading code, the servo starts to rotate from 0° to 180° and then reverse.

6. Code Explanation

void servopulse(int pin, int myangle) : To integrate the code together for easy use and management, the first parameter
is the pin number, the second parameter is the Angle of the servo.

map(myangle, 0, 180, 500, 2500); This is a mapping variable range function used to map the range of myangle variable
from 0-180 to 500-2500, so that we can get a value of 2500 when the servo is set to 180°, 500-2500 is the time that the
servo high level is maintained.

86 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.5.14 Project 13: Mini Lamp

1. Description

In this project, we are going to control a lamp via Arduino UNO and a button. When we press the button, the state of
the lamp will shift(ON or OFF).

2. Working Principle

When the button is released, a voltage VCC passing through R29 provides a high level for S terminal. When pressed,
pin 1 and 3, pin 2 and 4 are connected and voltage on S1 arrives GND as a low level. At this moment, R29 avoids a
short circuit between VCC and GND.

8.5. Arduino Project 87

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

We can read the pin voltage value via “digitalRead(Pin)”, 1 for high and 0 for low.

/*
keyestudio ESP32 Inventor Learning Kit
Project 13.1 Mini Lamp
http://www.keyestudio.com

*/
int button = 15;
int value = 0;
void setup() {
Serial.begin(9600); //Set the serial baud rate to 9600
pinMode(button, INPUT); //Connect the button pin to digital port 8 and set it to␣

→˓input mode.
}

void loop() {
value = digitalRead(button);//Read the button value
Serial.print("Key status:"); //Print "Key status:" on serial port
Serial.println(value); //Print the button variable on the serial port and wrapping␣

(continues on next page)

88 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

→˓lines
}

5. Test Result

After connecting the wiring and uploading code, open the serial monitor and set the baud rate to 9600. When we press
the button, serial port prints “Key status: 0”; When we release it, serial port prints “Key status: 1”.

6. Knowledge Expansion

Next, we will control the LED through the state of buttons.

Flow Chart

8.5. Arduino Project 89

ESP32 Starter Kit

Wiring Diagram:

90 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Code
Make a mini lamp with a button and a LED.

/*
keyestudio ESP32 Inventor Learning Kit
Project 13.2 Mini Lamp
http://www.keyestudio.com

*/
#define led 4
#define button 15
bool ledState = false;

void setup() {
// initialize digital pin PIN_LED as an output.
pinMode(led, OUTPUT);
pinMode(button, INPUT);

}

// the loop function runs over and over again forever
void loop() {
if (digitalRead(button) == LOW) { //When the button value is 0 for the first time,␣

→˓button jitter is triggered, so 20ms is delayed to judge whether the button is equal to␣
→˓0.

delay(20); //Delay 20ms
(continues on next page)

8.5. Arduino Project 91

ESP32 Starter Kit

(continued from previous page)

if (digitalRead(button) == LOW) { //judge whether the button value is 0
ledState = !ledState; //ledStart is equal to the inverse of its␣

→˓original value, which can be used to light the LED on and off
digitalWrite(led, ledState);

}
while (digitalRead(button) == LOW); //hold the button for the while loop, exit␣

→˓it when release it
}

}

7. Code Explanation

pinMode(button, INPUT); Set pin IO15 on the development board to input, so that the state of button can be identified.
When we press the button, IO15 is at a low level(0). If we release it, IO15 will be at high(1).

value = digitalRead(button); digitalRead(button) reads the high and low level (1 or 0) of the digital IO15 pin and
assigns the button value to value.

Serial.begin(9600); Set the serial baud rate. It is necessary to print value on serial port.

Serial.print(“Key status:”); Serial port prints value. Contents in print() will be printed. If it is character string,
quotation marks are needed, for instance, “Key status:”.

Serial.println(button); Serial port prints contents in println() in a new line. Here we print the button value.

if (digitalRead(button) == LOW) { . . . }: Determine if the button pin is equal to the low level. If so, execute the if
statement {. . . }, otherwise not executed.

! takes the inverse operator, so if this value is 1, it’s 0, and if it’s 0, it’s 1, so we can turn a light on and off by pressing
a button.

== is used to determine whether the value of the variable on the left is equal to the value on the right. Please refer to
the official website for details: https://www.arduino.cc/reference/en/.

92 Chapter 8. Arduino Tutorial

https://www.arduino.cc/reference/en/

ESP32 Starter Kit

8.5.15 Project 14: Counter

1. Description

Arduino 4-bit digital tube counter can record numbers within 0~9999. It features display speed, count mode adjustment
as well as reset function. This module is wildly applied in real-time counter (such as button-press and DC motor rotation
count), gaming and experiment equipment.

8.5. Arduino Project 93

ESP32 Starter Kit

2. Flow Chart

94 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Wiring Diagram

3. Test Code

A counter includes three buttons: plus, minus, and reset(return to zero). We program “if” to determine the state of
button, “pressed” for execution. For better results, we need to add a 200ms delay.

/*
keyestudio ESP32 Inventor Learning Kit
Project 14 Counter
http://www.keyestudio.com

*/
#include "TM1650.h" //Upload TM1650 library file
int item = 0; //Displayed value
#define CLK 22 //pins definitions for TM1650 and can be changed to other ports
#define DIO 21
TM1650 DigitalTube(CLK,DIO);

int res = 17; //Reset button
int subtract = 18; //minus button
int add = 19; //plus button

void setup(){
(continues on next page)

8.5. Arduino Project 95

ESP32 Starter Kit

(continued from previous page)

//set the pin connecting with button to input
pinMode(res,INPUT);
pinMode(add,INPUT);
pinMode(subtract,INPUT);
for(char b=0;b<4;b++){
DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.

}
}

void loop(){
DigitalTube.displayFloatNum(item);//Digital tube displays item value
int red_key = digitalRead(res); //Red button is the reset button
int yellow_key = digitalRead(subtract); //Yellow button is minus 1
int green_key = digitalRead(add); //Green button is plus 1
if(green_key == 0){
item++; //operate to add 1, item = item + 1
delay(200);

}
if(yellow_key == 0){
item--; //operate to reduce 1, item = item - 1
delay(200);

}
if(red_key == 0){
item = 0;
delay(200);

}
if (item > 9999) { //return to zero when greater than 9999(excessing the display␣

→˓range)
item = 0;

}
}

4. Test Result

After connecting the wiring and uploading code, press green button to add 1, yellow to minus 1, and red to reset. Press
the button and hold it, and the displayed value will keep adding or reducing.

8.5.16 Project 15: Responder

1. Description

This programmable responder inputs and receives signals through Arduino development board and a group of buttons,
and it judges the correctness of answers via a LED. It is a good object to exercise students’ reaction ability and draw
their attention to questions. If the answer is correct, the respondent obtains a lot scores.

Moreover, it simplifies teachers’ manipulation of question-grabbers and cuts answer clutters. It may even stimulate
students’ interests in learning.

96 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Flow Chart

8.5. Arduino Project 97

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Imagine a question-master and three respondents. Respondents are allowed to grab questions only when the master
presses the red button. Otherwise, their replies are invalid and lights are all off. Plus, if one of the three presses his/her
button, the remaining two buttons are also invalid.

/*
keyestudio ESP32 Inventor Learning Kit
Project 15 Responder
http://www.keyestudio.com

*/
int blue_key = 16; //Set blue button to connect pin D3
int green_key= 17; //Set green button to connect pin D4
int yellow_key = 18; //Set yellow button to connect pin D5
int red_key = 19; //Set red button to connect pin D6

int blue_led = 12; //Set blue LED to connect pin D7
int green_led = 13; //Set green LED to connect pin D8
int yellow_led = 14; //Set yellow LED to connect pin D9
int red_led = 27; //Set red LED to connect pin D10

(continues on next page)

98 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

void setup(){
//Set the pin connecting with button to input

pinMode(blue_key,INPUT);
pinMode(green_key,INPUT);
pinMode(yellow_key,INPUT);
pinMode(red_key,INPUT);

//Set the pin connecting with LED to output
pinMode(blue_led,OUTPUT);
pinMode(green_led,OUTPUT);
pinMode(yellow_led,OUTPUT);
pinMode(red_led,OUTPUT);

}

void loop(){
int red_key_val = digitalRead(red_key); //Read the red button value
digitalWrite(red_led,HIGH); //Red LED lights up
if(red_key_val == 0){ //Determine whether the red␣

→˓button is pressed
digitalWrite(red_led,LOW); //All LED go off
digitalWrite(blue_led,LOW);
digitalWrite(green_led,LOW);
digitalWrite(yellow_led,LOW);
delay(200);
while(1){ //while()loop
int blue_key_val = digitalRead(blue_key); //Read the button value
int green_key_val = digitalRead(green_key);
int yellow_key_val = digitalRead(yellow_key);
if(blue_key_val == 0){ //Determine␣

→˓whether the blue button is pressed
digitalWrite(blue_led,HIGH); //Blue LED lights up
break;

→˓ //Exit␣
→˓loop

}
if(green_key_val == 0){
digitalWrite(green_led,HIGH);
break;

}
if(yellow_key_val == 0){
digitalWrite(yellow_led,HIGH);
break;

}
}

}
}

8.5. Arduino Project 99

ESP32 Starter Kit

5. Test Result

Connect the wiring and upload the code. The answers of respondents are only valid when the red LED is off(red
button is pressed). When someone presses his/her button(yellow, green or blue), the appropriate LED as well as the
red counterpart light up. By now, rest of LED cannot turn on when pressing buttons. The responding action can be
performed only when the red button is pressed again.

6. Code Explanation

while(1) { . . . } Unlimited loop function. When the expression or value in while() is True, the execution circulates in
while{}. On the contrary, the loop quits when it is False. In this example, “1” in while(1) represents True, so code is
on a loop when entering “while”, which is endless.

For how to exit, we need a “break” statement.

break; It is used to exit a loop.

8.5.17 Project 16: Timebomb

1. Description

This project will give you an opportunity experience an interesting timebomb game.

In this project, the dot matrix represents your timebomb, while the digital tube displays remaining time. Buttons can
not only control the bomb but also set its time. You may set a countdown to control this bomb, and it explodes when
the countdown is over. Beyond that, a buzzer is adopted to alarm.

Anyhow, by programming on multiple sensors, your comprehensive capability of logic thinking can be enhanced.

100 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Flow Chart

8.5. Arduino Project 101

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

When mentioning a timebomb, we think of a timer and an activate button. In this project, however, it is an analog
bomb, so we also need a reset button. We set blue for plus, green for minus, yellow for counting down and red for
resetting. The time (unit: s) is displayed on digital tube and the 8x8 dot matrix shows the state of bomb(smile for safe
and cry for explosion).

/*
keyestudio ESP32 Inventor Learning Kit
Project 16 Timebomb
http://www.keyestudio.com

*/
#include "TM1650.h" //Upload TM1650 libraries
#include "LedControl.h"
//Dot matrix
int DIN = 23;
int CLK = 18;
int CS = 15;
LedControl lc=LedControl(DIN,CLK,CS,1);

byte smile[8]= {0x20,0x44,0x22,0x02,0x02,0x22,0x44,0x20};//Smile face
byte weep[8]= {0x20,0x42,0x24,0x04,0x04,0x24,0x42,0x20};//Crying face

// Button, buzzer and digital tube
int item = 0; //displayed value
TM1650 DigitalTube(22,21); //Set the SCL pin of the digital tube to 22 and the DIO pin␣
→˓to 21

(continues on next page)

102 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

int addition = 32; //Set the plus button to IO32
int subtraction = 33; //Set the minus button to IO33
int start = 34; //Set the start button to IO34
int reset = 35; //Set the reset button to IO35
int buzz = 26; //Set the buzzer to IO26

int buzz_val = 1; //The variable of buzzer

void printByte(byte character []) //The dot matrix display function
{
int i = 0;
for(i=0;i<8;i++)
{
lc.setRow(0,i,character[i]);

}
}

void setup(){
lc.shutdown(0,false); //MAX72XX is in power saving mode when starting
lc.setIntensity(0,8); //Set the brightness to the maximum
lc.clearDisplay(0); //Clear the display
//Set the pin mode
pinMode(addition,INPUT);
pinMode(subtraction,INPUT);
pinMode(start,INPUT);
pinMode(reset,INPUT);
pinMode(buzz,OUTPUT);

for(char b=0;b<4;b++){
DigitalTube.clearBit(b); //DigitalTube.clearBit(0 to 3); Clear bit display.

}
}

void loop(){
printByte(smile); //Dot matrix displays a smile face
DigitalTube.displayFloatNum(item); //Digital tube displays the item value
int blue_key = digitalRead(addition); //Read the button value
int green_key = digitalRead(subtraction);
int yellow_key = digitalRead(start);
if(blue_key == 0){ //Determine whether the button is pressed
item = item + 1; //+1
delay(200);

}
if(green_key == 0){
item = item - 1; //-1
delay(200);

}

if (item > 9999) { //When the value is greater than 9999(exceeding the display range),
→˓ reset

item = 0;
}

(continues on next page)

8.5. Arduino Project 103

ESP32 Starter Kit

(continued from previous page)

if(yellow_key == 0){
while(1){ //whlie()loop
DigitalTube.displayFloatNum(item); //Digital tube displays the item value
item--; //item--equals to item = item - 1
delay(1000);
buzz_val = !buzz_val; //“”takes the inverse runner. invert buzz_val
digitalWrite(buzz,buzz_val);
if(item == 0){
digitalWrite(buzz,LOW);
break; //break to exit the loop

}
}
while(item==0){ //when itme=0, enter loop
DigitalTube.displayFloatNum(item); //Digital tube displays the item value
printByte(weep); //Display a crying face
int red_key = digitalRead(reset);
if(red_key == 0){
break;

}
}

}

}

5. Test Result

After connecting the wiring and uploading code, press blue button to add time, green to reduce and red to reset. Press
yellow button for counting down. When it is over, the bomb explodes.

8.5.18 Project 17: Invasion Alarm

1. Description

This invasion alarm system is able to detect invaders in houses or small offices and warn the host to take measures in
time.

In this project, the sensor monitors a certain area. Some device on Arduino board will trigger LED to light up and
buzzer to beep for caution if a movement is detected in that zone.

Virtually, this module features practicability, easy installation and low costs. With the exception of home and office, it
also applies to factories, warehouses and markets, which, to a large extent, protects property security.

104 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Working Principle

Human body(37°C) always emits infrared ray with a wavelength of 10m, which approximates to that of the sensor
detected. On this account, this module is able to detects human beings movement. If there is, PIR sensor outputs a
high level about 3s. If not, it outputs a low level .

8.5. Arduino Project 105

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

From the working principle, we can read the level of the sensor pin to judge whether there are people nearby.

/*
keyestudio ESP32 Inventor Learning Kit
Project 17.1 Invasion Alarm
http://www.keyestudio.com

*/
int pir = 5; //Define IO5 as PIR sensor pin
void setup() {

pinMode(pir,INPUT); //Set IO5 pin to input
Serial.begin(9600);

}

void loop() {
int pir_val = digitalRead(pir); //Read the PIR result and assign it to pir_val
Serial.print("pir_val:"); //Print “pir_val”

Serial.println(pir_val);
delay(500);

(continues on next page)

106 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

}

5. Test Result

After connecting the wiring and uploading the code, open serial monitor to set baud rate to 9600, and the serial port
prints the PIR value.

6. Knowledge Expansion

Let’s make an invasion alarm. When the PIR sensor detects human, LED lights up and the buzzer emits sound. In
contrast, LED goes off and the buzzer stays quiet.

Flow Chart

8.5. Arduino Project 107

ESP32 Starter Kit

Wiring Diagram

108 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Code
To fulfil an invasion alarm, an “if() else” statement is necessary.

/*
keyestudio ESP32 Inventor Learning Kit
Project 17.2 Invasion Alarm
http://www.keyestudio.com

*/
int pir = 5; //Set PIR sensor pin to IO5
int red_led = 18; //Set red LED to pin IO18
int buzz = 19; //Set buzzer to pin IO19

void setup() {
// put your setup code here, to run once:
pinMode(pir,INPUT); //Set PIR pin to input mode
pinMode(red_led,OUTPUT); //Set LED pin to output mode
pinMode(buzz,OUTPUT); //Set buzzer pin to output mode

}

void loop() {
// put your main code here, to run repeatedly:
int pir_val = digitalRead(pir);
if(pir_val == 1){
digitalWrite(red_led,HIGH);

(continues on next page)

8.5. Arduino Project 109

ESP32 Starter Kit

(continued from previous page)

digitalWrite(buzz,HIGH);
}
else{
digitalWrite(red_led,LOW);
digitalWrite(buzz,LOW);

}
}

8.5.19 Project 18: Beating Heart

1. Description

In this project, a beating heart will be presented via an Arduino board, a 8X8 dot matrix display, a circuit board and some
electronic components. By programming, you can control the beating frequency, heart dimension and its brightness.

2. Wiring Diagram

110 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Test Code

When a large heart and a small heart switch display according to a certain time will give people a feeling of beating.

/*
keyestudio ESP32 Inventor Learning Kit
Project 18 Beating Heart
http://www.keyestudio.com

*/

#include "LedControl.h"
int DIN = 23;
int CLK = 18;
int CS = 15;
LedControl lc=LedControl(DIN,CLK,CS,1);
const byte IMAGES1[] = {0x30, 0x78, 0x7c, 0x3e, 0x3e, 0x7c, 0x78, 0x30}; // a big heart
const byte IMAGES2[] = {0x00, 0x10, 0x38, 0x1c, 0x1c, 0x38, 0x10, 0x00}; //a small heart
void setup() {
lc.shutdown(0,false);
// Set brightness to a medium value
lc.setIntensity(0,8);
// Clear the display
lc.clearDisplay(0);

}

void loop(){
for(int i=0; i < 8; i++){

lc.setRow(0,i,IMAGES1[i]);
}
delay(1000);
for(int i=0; i < 8; i++){

lc.setRow(0,i,IMAGES2[i]);
}
delay(1000);

}

4. Test Result

After connecting the wiring and uploading code, the two sizes of hearts are displayed alternately.

8.5. Arduino Project 111

ESP32 Starter Kit

8.5.20 Project 19 : Dimming Lamp

1. Description

The dimming lamp adjusts the brightness of LED via a potentiometer and an Arduino controller. The brightness is
subject to resistance value, which can be read and adjusted by connecting the ends of the potentiometer to digital or
analog pins on board. What’s more, this system is applied to control voltage or current of other devices such as fans,
bulbs and heaters.

112 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Working Principle

Essentially, potentiometer is an element that can change the value of resistance. According to Ohm’s law(U=I*R), the
resistance affects the voltage. Our potentiometer is 10K.

In this project, the maximum resistance is 10K. The ESP32 board will equally divide the voltage of 3V into 4095 parts
(3/4095=0.0007326007326). The analog voltage is obtained by multiplying the read value and 0.0007326007326.

8.5. Arduino Project 113

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Here we adopts analogRead(Pin) to read the analog value. Input the analog pin number connecting with the sensor into
this function, and the analog value can be read.

/*
keyestudio ESP32 Inventor Learning Kit
Project 19.1 Dimming Lamp
http://www.keyestudio.com

*/
int pot = 34; //Define variable pot to IO34
void setup() {
// put your setup code here, to run once:
Serial.begin(9600); //Set baud rate to 9600

}

void loop() {
// put your main code here, to run repeatedly:
int value = analogRead(pot); //Read io34 and assign it to the variable value
Serial.println(value); //Print the variable value and wrap it around
delay(200);

(continues on next page)

114 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

}

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, and the analog value will
be displayed, within the range of 0-4095.

6. Knowledge Expansion

We will control the brightness of LED via a potentiometer. As we know, it is influenced by PWM. However, the range
of analog value is 0-4095 while that of PWM is 0-255. Thus, a “map(value, fromLow, fromHigh, toLow, toHigh)”
function is needed.

Wiring Diagram

8.5. Arduino Project 115

ESP32 Starter Kit

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 19.2 Dimming Lamp
http://www.keyestudio.com

*/
int led = 25; //Define LED to IO25
int pot = 34; //Define pot to IO34
void setup() {
// put your setup code here, to run once:
pinMode(led,OUTPUT); //Set LED pin to output

}

void loop() {
// put your main code here, to run repeatedly:
int value = analogRead(pot);
int led_val = map(value,0,4095,0,255); //Convert the range of potentiometer analog␣

→˓value to the range we need
analogWrite(led,led_val);

}

116 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

7. Code Explanation

analogRead(pot); Read the analog value. Put the input pin of analog value in brackets.

map(value, fromLow, fromHigh, toLow, toHigh) map(value,0,4095,0,255); Convert the range of value from 0-4095
to 0-255. Because the range of value does not conform to that of PWM, a conversion is necessary.

8.5.21 Project 20: Light Pillar

1. Description

The resistance(less than 1K) of the photoresistor varies from the light, thus it can control the brightness of the dot
matrix. When controlling, we connect this resistor to an analog pin on the board to monitor the change of resistance.
In this way, the light automatically controls the brightness of the display.

Besides, the photoresistor is widely applied to our daily life. For instance, a curtain automatically opens or closes
according to the outer light intensity.

2. Working Principle

When it is totally in dark, the resistance equals 0.2M, and the voltage at signal terminal (point 2) approaches to 0V. The
stronger the light is , the smaller the resistance and voltage will be.

8.5. Arduino Project 117

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

We adopts analogRead(Pin) function to read the analog value. Connect the sensor to IO34 pin, and the value will be
printed on the serial monitor.

/*
keyestudio ESP32 Inventor Learning Kit
Project 20.1 Light Pillar
http://www.keyestudio.com

*/
int light = 34; //Define light to IO34
void setup() {
// put your setup code here, to run once:
Serial.begin(9600); //Set baud rate to 9600

}

void loop() {
// put your main code here, to run repeatedly:
int value = analogRead(light); //Read IO34 and assign it to the variable value
Serial.println(value); //Print the variable value and wrap it around
delay(200);

}

118 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, the analog value will be
displayed, withing the range of 0-4095.

6. Knowledge Expansion

We will use this photoresistor to sense the ambient light intensity. The two columns of middle are included in this
experiment to represent light intensity. The stronger it is, the more lighted LEDs will be. This forms a “light pillar”.

Wiring Diagram

8.5. Arduino Project 119

ESP32 Starter Kit

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 20.2 Light Pillar
http://www.keyestudio.com

*/

#include "LedControl.h"
int DIN = 23;
int CLK = 18;
int CS = 15;
LedControl lc=LedControl(DIN,CLK,CS,1);
const byte IMAGES[8] = {0x01,0x03,0x07,0x0F,0x1F,0x3F,0x7F,0xFF}; //Data of light pillar

int light = 34;

void setup() {
lc.shutdown(0,false);
// Set brightness to a medium value
lc.setIntensity(0,8);
// Clear the display
lc.clearDisplay(0);
pinMode(light,INPUT);

}

void loop(){
int value = analogRead(light);
int temp = map(value,0,4095,0,7); //Convert the range of analog values to 0-7
lc.setRow(0,3,IMAGES[temp]); //Display the value of the array IMAGES[temp] in␣

→˓column 3
lc.setRow(0,4,IMAGES[temp]); //Display the value of the array IMAGES[temp] in␣

→˓column 4
}

8.5.22 Project 21: Sound Controlled LED

1. Description

Sound controlled LED is a device used to detect sound in a way that controls the brightness of LED, which is composed
of a Arduino board and some components. It can connect to multiple sensors such as microphones. It converts sound
to changing voltage signal to be received by Arduino to control the LED on and off.

120 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Working Principle

When detecting a sound, the electret film in microphone vibrates, which changes the capacitance and generates a subtle
change of voltage.

Next, we make use of LM3 chip to build a proper circuit to amplify the detected sound up, which can be adjusted by a
potentiometer. Rotate it clockwise to enlarge the times.

8.5. Arduino Project 121

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Connect the sensor to pin IO33. Read the sound analog value through analogRead(Pin) function and print it on serial
monitor.

/*
keyestudio ESP32 Inventor Learning Kit
Project 21.1Sound Controlled LED
http://www.keyestudio.com

*/
int sound = 33; //Define sound as IO33
void setup(){

Serial.begin(9600);
pinMode(sound,INPUT);

}

void loop(){
int value = analogRead(sound);
Serial.println(value);

}

122 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, the analog value will be
displayed.

Sensitivity adjustment
If you feel that the sensitivity of the sound sensor is suitable, we can adjust the potentiometer of the sound sensor(right
for the highest sensitivity, left for the lowest sensitivity).

6. Knowledge Expansion

The commonly seen corridor light is a kind of sound controlled light. Meanwhile, it also includes a photoresistor.
Differed from that, here we establish a model that an LED only is affected by sound. When the analog volume exceeds
100, LED lights up for 2S and then goes off.

Flow Chart

8.5. Arduino Project 123

ESP32 Starter Kit

Wiring Diagram

124 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 21.2Sound Controlled LED
http://www.keyestudio.com

*/
int sound = 33; //Define sound to IO33
int led = 25; //Define led to IO25
void setup(){
pinMode(led,OUTPUT); //Set IO25 to output

}

void loop(){
int value = analogRead(sound); //Read analog value of IO33 and assign it to value
if(value > 100){ //Judge whether value is greater than 100
digitalWrite(led,HIGH); //If IO25 pin outputs high level, LED lights up
delay(2000);

}
else{
digitalWrite(led,LOW); //If IO25 pin outputs low level, LED lights off

}
}

8.5. Arduino Project 125

ESP32 Starter Kit

8.5.23 Project 22: Noise Meter

1. Description

Arduino noise meter embodies the sound signal to a series of dots, which are converted into patterns displayed on dot
matrix.

2. Wiring Diagram

3. Test Code

The noise meter is able to detect the ambient noise.

/*
keyestudio ESP32 Inventor Learning Kit
Project 22 Noisemeter
http://www.keyestudio.com

*/
#include <LedControl.h>

int DIN = 23;
int CLK = 18;

(continues on next page)

126 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

int CS = 15;
int sensor = 34;

LedControl lc=LedControl(DIN,CLK,CS,1);
byte data_val[8][8]= {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x03, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x0f, 0x07, 0x03, 0x01},
{0x00, 0x00, 0x00, 0x1f, 0x0f, 0x07, 0x03, 0x01},
{0x00, 0x00, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01},
{0x00, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01},
{0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01}
};

void setup(){
lc.shutdown(0,false); //When powering on, MAX72XX is in the power saving mode.
lc.setIntensity(0,8); //Set the brightness to the maximum
lc.clearDisplay(0); //Clear the display
}

void loop(){
int val = analogRead(sensor);
Serial.println(val);
int temp = map(val,0,800,0,7); //The range of analog values in the 0-800 is the most␣

→˓appropriate
for(int i=0;i<8;i++)
{
lc.setRow(0,7-i,data_val[temp][i]);

}
}

4. Test Code

After connecting the wiring and uploading code, the noise level view is displayed on dot matrix, as shown below.

8.5. Arduino Project 127

ESP32 Starter Kit

5. Code Explanation

data_val[] []{ . . . }; Two-dimensional array. If we use an axis X metaphor for linear array, two-dimensional array is
axis X and Y. In this code, the value in the first square brackets is on axis X, and the second is on axis Y. For instance,
column 3 and row 4, that is data_val[3] [4].

8.5.24 Project 23: Smart Cup

1. Description

In this project, we mainly adopt the Arduino development board to create a programmable smart cup, which reveals the
temperature of inner liquid through a RGB indicator. It can control the brightness of the light by setting a temperature
threshold. If the threshold is exceeded, it will get brighter. Otherwise, it gets darker.

The smart cup enables to help users better control the temperature of their drinking water and effectively prevent
overheating or freezing.

2. Working Principle

128 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Add libraries to Arduino IDE first.

/*
keyestudio ESP32 Inventor Learning Kit
Project 23.1 Smart Cup
http://www.keyestudio.com

*/
#include <xht11.h>
xht11 xht(26); //The DHT11 sensor connects to IO26
unsigned char dat[] = {0,0,0,0}; //Define an array to store temperature and humidity data

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);

}

void loop() {
// put your main code here, to run repeatedly:
if (xht.receive(dat)) { //Check correct return to true

(continues on next page)

8.5. Arduino Project 129

ESP32 Starter Kit

(continued from previous page)

Serial.print("RH:");
Serial.print(dat[0]); //The integral part of humidity,dht[1] is the decimal part
Serial.print("% ");
Serial.print("Temp:");
Serial.print(dat[2]); //The integer part of the temperature,dht[3] is the decimal␣

→˓part
Serial.println("C");

} else { //Read error
Serial.println("sensor error");

}
delay(1500); //Delay 1500ms

}

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, and the temperature and
humidity value will be displayed.

6. Knowledge Expansion

Now, we will make a smart cup which can show liquid temperature. We divide 100 into four parts with an LED, as
shown below: **Red LED: ** 100-75°C **Yellow LED: ** 75-50°C **Green LED: ** 50-25°C Blue LED: 25-0°C

Wiring Diagram

130 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Code

/*
keyestudio ESP32 ESP32 Inventor Learning Kit
Project 23.2 Smart Cup
http://www.keyestudio.com

*/
#include <xht11.h>
xht11 xht(26); //Define DHT11 to pin IO26
unsigned char dat[4] = { 0, 0, 0, 0 }; //Define an array to store temperature and␣
→˓humidity data

int yellow_led = 13; //Define yellow_led to io13
int green_led = 14; //Define green_led to io14
int blue_led = 27; //Define blue_led to io27
int temperature = 0; //Set a variable to save the temperature value
void setup() {
// put your setup code here, to run once:
pinMode(red_led, OUTPUT); //Set io12 to ouput
pinMode(green_led, OUTPUT); //Set io13 to ouput
pinMode(blue_led, OUTPUT); //Set io14 to ouput
pinMode(yellow_led, OUTPUT); //Set io27 to ouput
Serial.begin(9600);

}
(continues on next page)

8.5. Arduino Project 131

ESP32 Starter Kit

(continued from previous page)

void loop() {
// put your main code here, to run repeatedly:
if (xht.receive(dat)) { //Check correct return to true

temperature = dat[2];
if (temperature > 75) { // Determine whether value is greater than 75
digitalWrite(green_led, LOW);
digitalWrite(red_led, HIGH);
digitalWrite(blue_led, LOW);
digitalWrite(yellow_led,LOW);

}
if (temperature < 75 && temperature > 50) { //Determine whether value is between 50␣

→˓and 75
digitalWrite(green_led, LOW);
digitalWrite(red_led, LOW);
digitalWrite(blue_led, LOW);
digitalWrite(yellow_led,HIGH);

}
if (temperature < 50 && temperature > 25) { //Determine whether value is between 25␣

→˓and 50
digitalWrite(green_led, HIGH);
digitalWrite(red_led, LOW);
digitalWrite(blue_led, LOW);
digitalWrite(yellow_led,LOW);

}
if (temperature < 25) { //Determine whether value is smaller than 25
digitalWrite(green_led, LOW);
digitalWrite(red_led, LOW);
digitalWrite(blue_led, HIGH);
digitalWrite(yellow_led,LOW);

}
}
delay(1500); //Delay 1500ms

}

7. Code Explanation

xht11 xht(Pin); Set the instance named xht and add the pins

unsigned char dat[4] = { 0, 0, 0, 0 }; dat[0] is the integer part of the humidity value. dat[1] is the decimal part of the
humidity value. dat[2] is the integer part of the temperature value, and dat[3] is the decimal part of the temperature
value

&& (value < 100 && value > 75) means that, it is true only both expressions satisfying the condition, or else it is false.

132 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

8.5.25 Project 24: Weather Station

1. Description

This weather station records the ambient temperature and humidity value via Arduino board and a temperature and
humidity sensor.

Moreover, it empowers to adjust temperature and humidity values according to environmental parameters as a way to
achieve comfortable environmental conditions.

2. Wiring Diagram

3. Test Code

It is a simple weather device that responds to ambient humidity and temperature

/*
keyestudio ESP32 Inventor Learning Kit
Project 24Weather Station
http://www.keyestudio.com

*/
#include <LiquidCrystal_I2C.h>

(continues on next page)

8.5. Arduino Project 133

ESP32 Starter Kit

(continued from previous page)

#include <xht11.h>
LiquidCrystal_I2C lcd(0x27, 16,2); // set the LCD address to 0x27 for a 16 chars and 2␣
→˓line display
xht11 xht(26); //The DHT11 sensor connects to IO26
unsigned char dat[] = { 0, 0, 0, 0 }; //Define an array to store temperature and␣
→˓humidity data

void setup() {
lcd.init(); // initialize the lcd
lcd.backlight();

}

void loop() {
if (xht.receive(dat)) { //Check correct return to true

lcd.setCursor(0, 0);
lcd.print("humidity:");
lcd.setCursor(9, 0);
lcd.print(dat[0]);
lcd.setCursor(0, 1);
lcd.print("temperature:");
lcd.setCursor(12, 1);
lcd.print(dat[2]);

}
delay(1500); //Delay 1500ms

}

4. Test Result

After connecting the wiring and uploading code, the LCD display will directly discover the ambient humidity and
temperature value.

8.5.26 Project 25: Ultrasonic Rangefinder

1. Description

This ultrasonic rangefinder measures distance of obstacles by emitting sound waves and then receiving the echo. That
is to say, the distance is not an immediate value, but an observed one by a theoretical calculation of time difference
between emitter and receiver.

Ultrasonic is able to detect the shape of objects, set up automatic doors and estimate flow velocity and pressure.

134 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

What’s more, it supports cooperative works with computers. As a result, the measured value can be transmitted to
computers via Arduino board.

In daily life, it is widely used for motors, servos and LEDs as well as systems(automatic navigation, control and security
monitoring systems).

2. Working Principle

As we all know, ultrasonic is a kind of inaudible sound wave signal with high frequency. Similar to a bat, this module
measures distance of obstacles by calculating the time difference between wave-emitting and echo-receiving.

Maximum distance: 3M

Minimum distance: 5cm

Detection angle: 15°

8.5. Arduino Project 135

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

As its principle, we need to use a pulseIn(pin, value) function.

/*
keyestudio ESP32 Inventor Learning Kit
Project 25.1Ultrasonic Rangefinder
http://www.keyestudio.com

*/
int distance = 0; //Define a variable to receive the diatance value
int EchoPin = 14; //Connect Echo pin to io14
int TrigPin = 13; //Connect Trig pin to io13

float checkdistance() { //Acquire the distance
// preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2); //Delay 2um
//Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10); //Delay 10um
digitalWrite(TrigPin, LOW);

(continues on next page)

136 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

//Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance; //Return the diatance value

}

void setup() {
Serial.begin(9600);//Set the baud rate to 9600
pinMode(TrigPin, OUTPUT);//Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input

}

void loop() {
distance = checkdistance(); //Assign the read value to "distance"
if (distance < 4 || distance >= 400) { //Display "-1" if exceeding the detection␣

→˓range
distance = -1;

}
Serial.print("ditance: ");
Serial.print(distance);
Serial.println(" CM");
delay(200);

}

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, the serial port prints the
distance value.

8.5. Arduino Project 137

ESP32 Starter Kit

6. Knowledge Expansion

Let’s make a rangefinder.

We display characters on LCD 1602. Program to show “Keyestudio” at (3,0) and “distance:” at (0,1) followed by the
distance value at (9,1).

When the value is smaller than 100(or 10), a residue of the third(or the second) bit still exists. Therefore, an “if”
judgement is necessary to determine a certain condition.

Wiring Diagram

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 25.2Ultrasonic Rangefinder
http://www.keyestudio.com

*/
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,16,2); //set the LCD address to 0x27 for a 16 chars and 2␣
→˓line display

int distance = 0; //Define a variable to receive the diatance value
int EchoPin = 14; //Connect Echo pin to io14

(continues on next page)

138 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

int TrigPin = 13; //Connect Trig pin to io13
float checkdistance() { //Acquire the distance
// preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
//Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance;

}

void setup() {
Serial.begin(9600);//Set the baud rate to 9600
pinMode(TrigPin, OUTPUT);//Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input

lcd.init(); // initialize the lcd
// Print a message to the LCD.
lcd.backlight();
lcd.setCursor(3,0);
lcd.print("Keyestudio");
}

void loop() {
distance = checkdistance();

if (distance < 2 || distance >= 400) { //Display "-1" if exceeding the detection␣
→˓range

distance = -1;
}
if(distance < 100 && distance > 10){ //Eliminate the shadow of the third␣

→˓digit when the value drops to two digits
lcd.setCursor(11,1);
lcd.print(" ");

}
if(distance < 10){ //Eliminate two-digit shadows when the value drops to␣

→˓one digit
lcd.setCursor(10,1);
lcd.print(" ");

}
lcd.setCursor(0,1);
lcd.print("distance:");
lcd.setCursor(9,1);
lcd.print(distance);
delay(200);

}

8.5. Arduino Project 139

ESP32 Starter Kit

7. Code Explanation

float checkdistance() :Self-defining function. It greatly reduces loop() by collecting some specific codes which can be
directly recalled.

delayMicroseconds(); Delay function. delay()is in ms while delayMicroseconds() is in um for some precise delays.

pulseIn(pin, value) :Pulse-grabbing function. pin: the number of the Arduino pin on which you want to read the pulse.
Allowed data types: int. value: type of pulse to read: either HIGH or LOW. Allowed data types: int.

Please refer to the website for more details[pulseIn() - Arduino Reference]:

8.5.27 Project 26: Human Body Piano

1. Description

The analog piano includes a development board and an ultrasonic sensor. It enables to play different tones by detecting
the position of your fingers. Thus, this module is able to stimulate a piano to perform music and songs.

140 Chapter 8. Arduino Tutorial

https://www.arduino.cc/reference/en/language/functions/advanced-io/pulsein/

ESP32 Starter Kit

2. Flow Chart

8.5. Arduino Project 141

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

It is interesting that the played tones vary from distance of human’s body.

/*
keyestudio ESP32 Inventor Learning Kit
Project 26 Human Body Piano
http://www.keyestudio.com

*/
int distance = 0; //Define a variable to receive the distance
int EchoPin = 14; //Connect Echo pin to io14
int TrigPin = 13; //Connect Trig pin to io13

int beeppin = 5;

float checkdistance() { //Acquire distance
// preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);

(continues on next page)

142 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance;

}

void setup() {
Serial.begin(9600);//Set the baud rate to 9600
pinMode(TrigPin, OUTPUT);//Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input

}

void loop() {
distance = checkdistance();
if(distance < 10){
tone(beeppin, 262);//Play DO
delay(1000);

}
if(distance < 20 && distance > 10){
tone(beeppin, 294);//Play Re
delay(1000);

}
if(distance < 30 && distance > 20){
tone(beeppin, 330);//Play Mi
delay(1000);

}
if(distance < 40 && distance > 30){
tone(beeppin, 349);//Play fa
delay(1000);

}
if(distance < 50 && distance > 40){
tone(beeppin, 392);//Play So
delay(1000);

}
if(distance < 60 && distance > 50){
tone(beeppin, 440);//Play La
delay(1000);

}
if(distance < 70 && distance > 60){
tone(beeppin, 494);//Play Si
delay(1000);

}
Serial.println(distance);
noTone(beeppin);//Stop

}

8.5. Arduino Project 143

ESP32 Starter Kit

5. Test Result

Connect the wirings and upload the code. Play Do when the distance is less than 10. Play Re when the distance is
within 10~20. Play Mi when the distance is within 20~30. Play Fa when the distance is within 30~40. Play So when
the distance is within 40~50. Play La when the distance is within 50~60. Play Si when the distance is within 60~70.

6. Code Explanation

|| : logical and operational signs. if (distance < 2 || distance >= 400): If one of the expressions satisfies the condition,
it is true, otherwise it is false.

Please refer to official website for more details:[|| - Arduino Reference]:

8.5.28 Project 27: Intelligent Parking

1. Description

This intelligent parking system detects and optimizes parking position via an ultrasonic sensor. With this system, wrong
parking is avoided to a large extent.

Firstly, you need to install the sensor around the carpark. And then it will detect the distance between the car and its
edges and send the information to the development board so as to control the car to automatically adjust to the optimal
parking position.

144 Chapter 8. Arduino Tutorial

https://www.arduino.cc/reference/en/language/structure/boolean-operators/logicalor/

ESP32 Starter Kit

2. Flow Chart

8.5. Arduino Project 145

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

When parking, we can use the ultrasonic to know the situation of blind spots. In this project, lines displayed on the dot
matrix indicates the distance of the car.

/*
keyestudio ESP32 Inventor Learning Kit
Project 27 Intelligent Parking
http://www.keyestudio.com

*/
#include <LedControl.h>

int DIN = 23; //Define DIN pin to IO23
int CS = 15; //Define CS pin to IO15
int CLK = 18; //Define CLK pin to IO18

int temp = 0;

int distance = 0; //Define a variable to receive the distance
int EchoPin = 14; //Connect Echo pin to IO14
int TrigPin = 13; //Connect Trig pin to IO13

(continues on next page)

146 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

float checkdistance() { //Acquire distance
// preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance;

}

LedControl lc = LedControl(DIN, CLK, CS, 4);
byte data_val[4][8] = {
{ 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x04, 0x05, 0x05, 0x04, 0x00, 0x00 },
{ 0x00, 0x10, 0x14, 0x15, 0x15, 0x14, 0x10, 0x00 },
{ 0x40, 0x50, 0x54, 0x55, 0x55, 0x54, 0x50, 0x40 },

};

void setup() {
lc.shutdown(0, false); //MAX72XX is in power-saving mode at startup
lc.setIntensity(0, 8); //Set the brightness to its maximum value
lc.clearDisplay(0); //Clear display

pinMode(TrigPin, OUTPUT); //Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input
Serial.begin(9600);

}

void loop() {
distance = checkdistance();
Serial.println(distance);
if (distance < 15) {
temp = 0;

} else if (distance < 30 && distance > 15) {
temp = 1;

} else if (distance < 40 && distance > 30) {
temp = 2;

} else if (distance > 50) {
temp = 3;

}
for (int i = 0; i < 8; i++) {
lc.setRow(0, i, data_val[temp][i]);

}
}

8.5. Arduino Project 147

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, lines will be displayed on the dot matrix. If the detected distance is
less than 50cm, there will be fewer lines.

8.5.29 Project 28: Intelligent Gate

1. Description

The intelligent gate is an intelligent parking lot system that integrates MCU and ultrasonic sensor, which automatically
controls the gate according to the distance of cars, so as to better control the car access.

When a certain distance is reached, MCU receives the signal from the sensor and estimates the distance via the signal
intensity. If the car is approaching or leaving, MCU will open or close the gate via a servo.

148 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

2. Flow Chart

8.5. Arduino Project 149

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 28 Intelligent Gate
http://www.keyestudio.com

*/
#define servo_pin 25
int distance = 0; //Define a variable to receive the distance
int EchoPin = 14; //Connect Echo pin to IO14
int TrigPin = 13; //Connect Trig pin to IO13

//Ultrasonic ranging program
float checkdistance() { //Acquire distance
//preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
//Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
//Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance;

(continues on next page)

150 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

}

//Servo rotation program
void Set_Angle(int angle_val) { //Impulse function
int pulsewidth = map(angle_val, 0, 180, 500, 2500); //Map Angle to pulse width
for (int i = 0; i < 10; i++) { //Output a few more pulses
digitalWrite(servo_pin, HIGH);//Set the servo interface level to high
delayMicroseconds(pulsewidth);//The number of microseconds of delayed pulse width␣

→˓value
digitalWrite(servo_pin, LOW);//Lower the level of servo interface
delay(20 - pulsewidth / 1000); //Add the bracket

}
}

void setup() {
// put your setup code here, to run once:
pinMode(servo_pin,OUTPUT);
pinMode(TrigPin, OUTPUT);//Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input

}

void loop() {
// put your main code here, to run repeatedly:

distance = checkdistance();
Serial.println();
if(distance < 30){
Set_Angle(180);
delay(5000);//Wait for 5s

}
if(distance > 30){
Set_Angle(0);

}
}

5. Test Result

After connecting the wiring and uploading code, the servo will rotate to 180° for 5s if the detected distance is less than
30cm. On the contrary, the servo will rotate to 0°.

8.5.30 Project 29: IR Remote Control

1. Description

The IR remote control uses IR signal to control LED, which greatly simplifies the process of controlling LED.

8.5. Arduino Project 151

ESP32 Starter Kit

2. Working Principle

In this project, we often use a carrier of about 38K for modulation.

IR remote control system includes modulation, emitting and receiving. It sends data through modulating, which im-
proves the transmission efficiency and reduces the power consumption.

Generally, the frequency of carrier modulation is within 30khz~60khz(usually 38kHz). The duty cycle of the square
wave is 1/3, as shown below, which is decided by the 455kHz crystal oscillator on the emitting end. An Integer frequency
division is essential for crystal oscillator at this end, and the frequency coefficient usually evaluates 12. Therefore,
455kHz÷1237.9kHz38kHz.

38KH carrier (complete) emitting diagram:
Carrier frequency: 38KHz

Wave length: 940nm

Receiving angle: 90°

Control distance: 6M

152 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

Schematic diagram of remote control buttons:

8.5. Arduino Project 153

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Add libraries to Arduino IDE first.

/*
keyestudio ESP32 Inventor Learning Kit
Project 29.1 IR Remote Control
http://www.keyestudio.com

*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

const uint16_t recvPin = 19; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object
long ir_rec;

void setup()
{

(continues on next page)

154 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

Serial.begin(9600); // Initialize the serial port and set the baud rate to 9600
irrecv.enableIRIn(); // start receiving signals

}

void loop() {
if (irrecv.decode(&results)) {
ir_rec = results.value; //assign the signal to the variable ir_rec
if(ir_rec != 0){ //Prevente the code from repeating execute when the␣

→˓button is pressed
Serial.print(ir_rec, HEX); //Print the variable ir_rec in hexadecimal
Serial.println();//Wrapping lines
}
irrecv.resume(); //Release the IR remote and receive the next value.

}
}

5. Test Result

After connecting the wiring and uploading code, open the serial monitor and set the baud rate to 9600. Press the button
on the remote control, and you will see the value in hexadecimal.

6. Knowledge Expansion

Next, we will use an IR remote control to control the LED. Press OK to light up the LED and press again to turn it off.

Wiring Diagram

8.5. Arduino Project 155

ESP32 Starter Kit

Code

/*
keyestudio ESP32 Inventor Learning Kit
Project 29.2 IR Remote Control
http://www.keyestudio.com

*/
#include <Arduino.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>

int led = 25;
int led_val = 0;
const uint16_t recvPin = 19; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object
long ir_rec;

void setup() {
Serial.begin(9600); // Initialize the serial port and set the baud rate to 9600
irrecv.enableIRIn(); // start receiving signals
pinMode(led, OUTPUT);

}
(continues on next page)

156 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

void loop() {
if (irrecv.decode(&results)) {
ir_rec = results.value; //assign the signal to the variable ir_rec
if (ir_rec != 0) { //Prevente the code from repeating execute when the␣

→˓button is pressed
if (ir_rec == 0xFF02FD) { //Determine whether the received IR signal is from␣

→˓button OK
led_val = !led_val; //Reverse a variable. If the initial value is 0, it␣

→˓turns to 1 after reversing
digitalWrite(led, led_val);

}
}
irrecv.resume(); //Release the IR remote and receive the next value.

}
}

8.5.31 Project 30: Smart Home

1. Description

In this technology era, we are all familiar with smart home. It is a system that can control electric appliance via buttons.

In this project, we seek to stimulate a smart home via an IR remote control. With Arduino MCU as its core, it can be
used to control light, air conditioners, TV and security monitors.

8.5. Arduino Project 157

ESP32 Starter Kit

2. Flow Chart

158 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

With the IR remote control, this smart home reveals various sensor values on LCD, including a temperature and hu-
midity sensor, a sound sensor, a photoresistor, a potentiometer and an ultrasonic sensor.

/*
keyestudio ESP32 Inventor Learning Kit
Project 30 Smart Home
http://www.keyestudio.com

*/
#include <LiquidCrystal_I2C.h>
#include <IRremoteESP8266.h>
#include <IRrecv.h>
#include <IRutils.h>
#include <xht11.h>

LiquidCrystal_I2C lcd(0x27, 16, 2); // set the LCD address to 0x27 for a 16 chars and 2␣
→˓line display

const uint16_t recvPin = 19; // Infrared receiving pin
IRrecv irrecv(recvPin); // Create a class object used to receive class
decode_results results; // Create a decoding results class object
long ir_rec;

xht11 xht(26); //The DHT11 connects to IO26
unsigned char dat[] = { 0, 0, 0, 0 }; //Define an array to store temperature and␣
→˓humidity data

(continues on next page)

8.5. Arduino Project 159

ESP32 Starter Kit

(continued from previous page)

int distance = 0; //Define a variable to receive the distance
int EchoPin = 14; //Connect Echo pin to IO14
int TrigPin = 13; //Connect Trig pin to IO13

int ligth_sensor = 33; //Define the photoresistor pin
int sound_sensor = 32; //efine the sound sensor pin
int pot_sensor = 25; //Define the potentiometer pin

void setup() {
//LCD 1602
lcd.init(); // initialize the lcd
lcd.backlight(); //Turn on the LCD backlight
lcd.setCursor(3, 0);
lcd.print("keyestudio"); //LCD displays "keyestudio"
//IR receiver
irrecv.enableIRIn(); // start receiving signals
//Ultrasonic
pinMode(TrigPin, OUTPUT); //Set Trig pin to output
pinMode(EchoPin, INPUT); //Set Echo pin to input

}
void loop() {
if (irrecv.decode(&results)) {

if (results.value != 0) { //Prevent the button from being pressed repeatedly
ir_rec = results.value; //The signal is assigned to the variable ir_rec
show_clear();

}
irrecv.resume(); //Release the IRremote and receive the next value.

}
switch (ir_rec) {
case 0xFF02FD: show_clear(); break;
case 0xFF6897: show_temperature(); break;
case 0xFF9867: show_humidity(); break;
case 0xFFB04F: show_distance(); break;
case 0xFF30CF: show_luminance(); break;
case 0xFF18E7: show_sound(); break;
case 0xFF7A85: show_pot(); break;

}
delay(300);

}

void show_clear() { //Clear display
lcd.setCursor(0, 1);
lcd.print(" ");

}

void show_temperature() { //Display temperature
if (xht.receive(dat)) { //Check correct return to true
lcd.setCursor(0, 1);
lcd.print("Temperature:");
lcd.setCursor(13, 1);
lcd.print(dat[2]);

(continues on next page)

160 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

if (dat[2] < 100) {
lcd.setCursor(15, 1);
lcd.print(" ");

}
}

}

void show_humidity() { //Display humidity
if (xht.receive(dat)) { //Check correct return to true
lcd.setCursor(0, 1);
lcd.print("Humidity:");
lcd.setCursor(10, 1);
lcd.print(dat[0]);
Serial.println("2");
if (dat[0] < 100) {
lcd.setCursor(12, 1);
lcd.print(" ");

}
}

}

float checkdistance() { //Acquire distance
// preserve a short low level to ensure a clear high pulse:
digitalWrite(TrigPin, LOW);
delayMicroseconds(2);
// Trigger the sensor by a high pulse of 10um or longer
digitalWrite(TrigPin, HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin, LOW);
// Read the signal from the sensor: a high level pulse
//Duration is detected from the point sending "ping" command to the time receiving␣

→˓echo signal (unit: um).
float distance = pulseIn(EchoPin, HIGH) / 58.00; //Convert into distance
delay(10);
return distance;

}

void show_distance() { //Display the distance
distance = checkdistance();
// if (distance < 2 || distance >= 400) { //Disolay "-1" if exceeding the detection␣

→˓range
// distance = -1;
// }
lcd.setCursor(0, 1);
lcd.print("distance:");
lcd.setCursor(9, 1);
lcd.print(distance);
if (distance < 100 && distance > 10) { //Eliminate the third residual digit when the␣

→˓value drops to two digits
lcd.setCursor(11, 1);
lcd.print(" ");

}

(continues on next page)

8.5. Arduino Project 161

ESP32 Starter Kit

(continued from previous page)

if (distance < 10) { //Eliminate the second residual digit when the value drops to␣
→˓one digit

lcd.setCursor(10, 1);
lcd.print(" ");

}
}

void show_luminance() { //Read the analog value of photoresistor
int value = analogRead(ligth_sensor);
lcd.setCursor(0, 1);
lcd.print("Luminance:");
lcd.setCursor(11, 1);
lcd.print(value);
if (value < 1000) {
lcd.setCursor(14, 1);
lcd.print(" ");

}
if (value < 100) {
lcd.setCursor(13, 1);
lcd.print(" ");

}
if (value < 10) {
lcd.setCursor(12, 1);
lcd.print(" ");

}
}

void show_sound() { //Read the analog sound value
int value = analogRead(sound_sensor);
lcd.setCursor(0, 1);
lcd.print("Sound:");
lcd.setCursor(7, 1);
lcd.print(value);
if (value < 1000) {

lcd.setCursor(10, 1);
lcd.print(" ");

}
if (value < 100) {
lcd.setCursor(9, 1);
lcd.print(" ");

}
if (value < 10) {
lcd.setCursor(8, 1);
lcd.print(" ");

}
}

void show_pot() { //Read the analog value of potentiometer
int value = analogRead(pot_sensor);
lcd.setCursor(0, 1);
lcd.print("PotAnalog:");
lcd.setCursor(11, 1);

(continues on next page)

162 Chapter 8. Arduino Tutorial

ESP32 Starter Kit

(continued from previous page)

lcd.print(value);
if (value < 1000) {
lcd.setCursor(14, 1);
lcd.print(" ");

}
if (value < 100) {
lcd.setCursor(13, 1);
lcd.print(" ");

}
if (value < 10) {
lcd.setCursor(12, 1);
lcd.print(" ");

}
}

5. Test Result

After connecting the wiring and uploading code, we can see the corresponding contents on LCD by pressing buttons.
OK button clears the sensor display.

8.5. Arduino Project 163

ESP32 Starter Kit

164 Chapter 8. Arduino Tutorial

CHAPTER

NINE

SCRATCH TUTORIAL

9.1 Scratch Code file download

Click on the link to download the Scratch code file:Download-Scartch-Codes

9.2 Scratch Project

9.2.1 Project 1: LED Blinking

1. Description

LED blinking is a simple project designed for starters. You only need to install an LED on Arduino board and upload
the code on Arduino IDE. This project reinforces the learning of Arduino conceptual framework and using methods
for starters.

9.2.2 2. Working Principle

LED: Generally speaking, limited IO ports of output current may cause low brightness of LED, so a NPN triode (Q2)
is applied in circuit as a switch. In this case, the LED will light up if the base(pin 1) of triode is at a high level. On the
contrary, LED goes off when the base is at low.

165

ESP32 Starter Kit

Triode switch: Briefly, LED lights up when the base(pin 1) is at a high level. In the same breath, the collector(pin 3)
and emitter(pin 2) are connected, and then VCC passes through a current-limiting resistor to LED and finally to GND,
which forms a circuit. On the contrary, LED goes off when the base is at low. In this circumstance, the collector and
emitter are disconnected and the LED lights off.

3. Wiring Diagram

9.2.3 4. Test Code

According to previous principles, we can control LED via levels of pins on the development board.

1. Drag the following block in “Events” part.

2. Drag the following block in “Control” part .

166 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Drag the following block in “Pins” part and set the IO5 pin to output.

4. Drag the following block in “LED” part and set the IO5 pin to HIGH.

5. Drag the following block in “Control” part .

6. Drag the following blocks and set the IO5 pin to LOW.

Complete Code

9.2. Scratch Project 167

ESP32 Starter Kit

9.2.4 5. Test Result

After uploading the code and powering on, LED will be on for 1s and off for 1s.

6. Code Explanation

1. Code blocks will not execute if the following block is not exist.

2. Code blocks in the following block will execute in a loop.

168 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. It is a module used to set the pin mode(control LED and buzzer for “output” mode, and read sensor module for
“input”).

4. It is a module used to set the pin and the levels(“HIGH” and “LOW”).

5. It is a module used to set the delay time.

9.2.5 Project 2: Breathing LED

1. Description

Arduino breathing led utilizes on-board programmable PWM to output analog waveform. After powering on, LED
brightness can be adjusted through duty cycle of the waveform to eventually realize the effect of breathing led. In this
way, ambient light can be simulated by changing LED brightness over time. Also, breathing led can form a colorful
mini light to construct a tranquil and warm environment.

2. What is PWM?

PWM controls analog output via digital means, which is able to adjust duty cycle of the wave (a signal circularly shifting
between high level and low level).

For Arduino, digital ports of voltage output are LOW and HIGH, which respectively correspond to 0V and 5V. Gener-
ally, we define LOW as 0 and HIGH as 1. Arduino will output 500 signals of 0 or 1 within 1s. If they are “1”, 5V will
be output. Oppositely, if they are all 0, the output will be 0V. Or if they are 010101010101. . . , the average output will
be 2.5V.

In other words, output ratio of 0 and 1 affects the voltage value, the more 0 and 1 signals are output per unit time, the
more accurate the control will be.

9.2. Scratch Project 169

ESP32 Starter Kit

170 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

We adopt “for” statement to increase a variable from 0 to 255, and define the variable as PWM output (analogWrite(pin,
value)). By the way, a delay time may reinforce the control of LED shining time. Next, we use another “for” statement
to decrease it from 255 to 0 with a delay time to control LED dimming process.

1. Drag the two code blocks.

9.2. Scratch Project 171

ESP32 Starter Kit

2. Drag the following block from “Variables” part, and define the name to “item” with an initial assignment “0”.
Put this block in “forever” block.

3. Drag the following block from “Control” part and set it to 255 times, which is the maximum value of PWM.

4. Drag the following block from “Variables” part, put “item” as its changed object and set the mode to “++”.

5. Drag the following block from “LED” part and set the LED pin to IO5. Then add an “variable” block in it and
fill in the blank with “item”.

6. Drag the following block from “Control” part and set the time to 0.01s , that is 10ms.

7. According to previous steps, build another code block with the only difference of variable mode “– –”.

172 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code

9.2. Scratch Project 173

ESP32 Starter Kit

5. Test Result

After uploading the code, we can see the LED dims gradually. It “breathes” evenly.

174 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

6. Code Explanation

1. This block is used to set variable usable range, variable type , name and its initial value.

2. Repeating times can be assigned in the blank of this repeat block.

3. Input a variable name in the blank and its value will add 1 each time the code executes. “++” can be altered to
“– –”.

4. Input a variable name in the blank and its value will reduce 1 each time the code executes. “– –” can be altered
to “++” .

5. This is a PWM output module, and the white box is the value of the output PWM.

9.2.6 Project 3SOS Distress Device

1. Description

SOS device is able to emit distress signals, which coincides with the principle of Morse code. It is convenient for
emergencies.

9.2. Scratch Project 175

ESP32 Starter Kit

2. Wiring Diagram

3. Test Code

What we should clear firstly is how SOS distress light blinks: LED quickly blinks 3 times for “S” and slowly blinks
3times for “O”. And then, we control the blinking times and duration via “for” statement and set interval time among
letters.

1. Drag the two code blocks.

176 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Drag the following block in “Pins” part and set the IO5 pin to output.

Letter “S”
3. Drag the following block from “Control” part and set to 3 times, as “S” means blink for 3 times.

4. Drag the following blocks from “LED” part and set the IO5 pin to HIGH. Then set the delay time to 0.15s.

5. Drag the following blocks from “LED” part and set the IO5 pin to LOW. Then set the delay time to 0.1s.

Letter O
6. Refer to previous steps to build the following code blocks. Modify the HIGH ouput to delay 0.4s and LOW to

0.2s.

9.2. Scratch Project 177

ESP32 Starter Kit

Letter S
7. Operate step 3 ,4 and 5 again.

8. Add a delay time of 5s to the end, and “SOS” will repeat every 5s.

178 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code

9.2. Scratch Project 179

ESP32 Starter Kit

180 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4.Test Result

After uploading the code, LED respectively blinks for 3 times quickly and slowly.

9.2.7 Project 4: Traffic Light

1. Description

The traffic light module is a device used to control the route of pedestrians and vehicles. It includes a red, a yellow and
a green light, which implies different instructions.

Red for Stop: Pedestrians and vehicles stop proceeding. Yellow for Caution: Pedestrians and vehicles are ready for
stopping. If the drive is already in process, the speed should be slow. Green for Proceed: Pedestrians and vehicles
keep going with the abidance of traffic regulations.

In this project, you can use Arduino to write code to control traffic lights. For instance, set the duration of each lights
and the interval time among them. Besides, you may also add a timer to alter light colors to schedule.

2. Wiring Diagram

9.2. Scratch Project 181

ESP32 Starter Kit

3. Test Code

We simply stimulate the traffic lights: green LED lights up for 5s, yellow LED blinks for 3 times, and red LED lights
up for 5s. And we set this to loop.

The blinking of yellow LED can utilize for()statement we have mentioned in project 3. Thus, we only need to set the
lighting time to complete a traffic light.

1. Drag the two code blocks.

2. Set the pin mode to “output”

3. Drag the following blocks from “LED” part and set the IO27 pin to HIGH and then LOW. Then set the delay
time to 5s.

4. Drag the following blocks from “Control” part and set the repeat time to 3, then set the IO26 pin to HIGH and
then LOW. Then set the delay time to 0.5s.

182 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Repeat step 3, and set the pin to IO25.

Complete Code

9.2. Scratch Project 183

ESP32 Starter Kit

184 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Test Result

After uploading the code, green LED will light up for 5s, yellow LED will blink for 3 times, and red LED will be on
for 5s.

9.2.8 Project 5Rainbow Ambient Light

1. Description

2812RGB LED is a programable colorful dreamy light, whose color, brightness and rhythm are adjustable. This rain-
bow ambient light can be used as a dynamic decoration at will. Or you may control it to “dance with music”. Impor-
tantly, it can be improved as an alarm. Its built-in sensor detects the ambient surroundings to warn users by changing
its color, brightness and rhythm.

2. Working Principle

The data protocol adopts communication mode of single-line return-to-zero code. After the pixel is reset on power,
DIN terminal receives data from the controller. The firstly arriving 24bit data will be extracted by the first pixel and be
sent to the inner data register.

Remaining data will be amplified by an amplification circuit and be transmitted through DOUT port to the next cascaded
pixel. Being transmitted through pixels, the signal decreases 24bit each time.

Besides, The pixel adopts automatic shaping and forwarding technology, insomuch that the cascade number of the pixel
is only limited by the signal transmission speed.

9.2. Scratch Project 185

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Let’s learn how to light up 2812 RGB and set its colors.

1. Drag the two code blocks.

2. Drag the following block from “RGB LED” part and set the pin to IO15 and the number of LED to 6.

186 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Drag the following block from “RGB LED” part and set brightness to 20.

4. Drag the following blocks and set the number of LED to 0 ,1, 2, 3, 4 and 5, then choose red, green, blue, yellow,
purple and white colors.

5. Add the following block.

Complete Code

9.2. Scratch Project 187

ESP32 Starter Kit

188 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After uploading code, connecting the wiring and powering on, the LED will light up in different colors, as show below:

6. Knowledge Expansion

In this expansion project, let’s make a mini light show!

Nest four “repeat” blocks and add a “variable +” in them, then clear the corresponding variables to 0 at the end of each
loop.

9.2. Scratch Project 189

ESP32 Starter Kit

Put the above three variables in “RGB” block so that these color values are controlled. Then add a refresh module.

Put the RGB in a “show color” block to display colors. And define a variable item to control the displayed LED.

The forever module is used to control RGB LEDs, which will cycle from 0-5 to gradually light up each light.

190 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code

9.2. Scratch Project 191

ESP32 Starter Kit

192 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7. Code Explanation

1. Set the number of 2812 RGB. A development board pin can control multiple 2812 RGB LEDs, so we need to set
the number in advance and select the connected pin.

2. Set the brightness of 2812 RGB. Input the brightness value within 0-255, in which 255 is the brightest.

3. This block will turn off all 2812 RGBs.

4. Control the display of 2812 RGBs. We can fill the blanks to control the lighting LED and its color after selecting
the pin. For instance, “0 to 0” means only the first LED lights up. After uploading the code, the first LED will
turn on in the set color.

NOTE: The two blanks also can be filled with variables, so that a light show is able to be formed.

5. Set the color of 2812 RGBs. The displayed color can be modulated by the value in red, green and blue. We can
add this block in the color settings of 2812 RGB.

6. It can control a single 2812 RGB display via enter the control led number and select the color.

7. The 2812 RGB will display the set color only after refreshing

9.2. Scratch Project 193

ESP32 Starter Kit

9.2.9 Project 6Water Flow Light

1. Description

This simple water flow light project enables to help you learn electronic packaging. In this project, we will control
LEDs to change the color in a specified speed via a Arduino board.

2. Wiring Diagram

194 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Test Code

A water flow light consists of a stream of LED lighting from left to right.

1. Drag the two basic code blocks.

2. Set the pin mode to “output”

2. Drag the following blocks from “LED” part and set the IO15 pin to LOW, the IO12 pin to HIGH. Then set the
delay time to 0.2s.

3. Drag the following blocks from “LED” part and set the IO12 pin to LOW, the IO13 pin to HIGH. Then set the
delay time to 0.2s.

9.2. Scratch Project 195

ESP32 Starter Kit

4. Drag the following blocks from “LED” part and set the IO13 pin to LOW, the IO14 pin to HIGH. Then set the
delay time to 0.2s.

5. Drag the following blocks from “LED” part and set the IO14 pin to LOW, the IO15 pin to HIGH. Then set the
delay time to 0.2s.

Complete Code

196 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 197

ESP32 Starter Kit

4. Test Result

After uploading code and powering on, the LEDs light up from left to right.

9.2.10 Project 7Active Buzzer

1. Description

An active buzzer is a component used as an alarm, a reminder or an entertaining device, which boasts a reliable sound.
What’s more, it empowers to stimulate highly controllable sounds, making our projects more interesting.

2. Working Principle

An active buzzer integrates a multi-vibrator, so it makes sound only via DC voltage. Pin 1 of the buzzer connects to
VCC and pin 2 is controlled by a triode. When a high level is provided for the base (pin 1) of the triode, its collector
(pin 3) and emitter (pin 2) link to GND, and then the buzzer emits sound. Oppositely, if we offer a low level to the base,
the rest of pins will be disconnected, so the buzzer will remain quiet.

198 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring diagram

4. Test Code

If the development board outputs a high level, the buzzer will emit sound. If it outputs a low level, the buzzer will stop
ringing.

1. Drag the two basic code blocks.

2. Drag the following blocks from “Buzzer” part and set the IO5 pin to HIGH. Then set the delay time to 1s.

9.2. Scratch Project 199

ESP32 Starter Kit

3. Drag the following blocks from “Buzzer” part and set the IO5 pin to LOW. Then set the delay time to 1s.

Complete Code

200 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After uploading code and powering on, the buzzer emits sound for 1s and stays quiet for 1s.

6. Code Explanation

Buzzer output block. We firstly define the pin to IO5 and then set the output to “HIGH” or “LOW”. The buzzer will
beep when at HIGH, while it will be quiet at LOW.

9.2. Scratch Project 201

ESP32 Starter Kit

9.2.11 Project 8Music Performer

1. Description

In this project, we will use a power amplifier speaker to play music. This speaker can not only play simple songs, but
also perform what you desire. Thus, you can program other interesting codes in the project to accomplish splendid
learning outcomes.

2. Working Principle

The electrical signal is input from pin 1 of RP1 (adjusts signal intensity, which is also the sound volume). After coupling
in C4 and passing R5, the signal reaches IN- pin of 8002B, in which it is operationally amplified and output to BEE1
speaker.

202 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

9.2. Scratch Project 203

ESP32 Starter Kit

4. Test Code

204 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After uploading code and powering on, the amplifier circularly plays music tones with corresponding frequency: DO,
Re, Mi, Fa, So, La, Si.

6. Knowledge Expansion

Let’s make it play a birthday song. We have already added some songs in library so you can directly drag these song
blocks from “Music”.

Code:

7. Code Explanation

1. Set the tone frequency. After setting the pin, we can select the frequency to compose music.

2. Music module, for the convenience of use, we have integrated 6 pieces of music in the code, thus, we just need
to set the pin and select the music.

9.2. Scratch Project 205

ESP32 Starter Kit

3. Stop playing module, we only need to set the corresponding pin to stop the music

9.2.12 Project 9Digital Tube Display

1. Description

This 4-Digit tube display is a device used to display counting or time, which is able to display numbers from 0 ~ 9 and
simple letters. It consists of four digital tubes, each of which has seven light-emitting diodes (LED).

Moreover, multiple functions can be realized by connecting their pins to the Arduino development board, such as
timekeeping and some game storing.

206 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Working Principle

TM1650 utilizes IIC protocol and adopts two bus lines (SDA and SCL).

The code is provided in our blocks, and the digital tube will display numbers via this code.

9.2. Scratch Project 207

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

To show numbers on the display, you only need to drag a “TM 1650 display” block from “Digital tube” and set the
number string to 9999.

208 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, the digital tube display shows “9999”, as shown below.

6. Extended Code

Let’s have some difficult operations. Rather than static numbers, we handle it to show some dynamic ones. The
following code manipulates the tubes to display 1~9999.

1. Drag the two basic code blocks.

2. Drag the following block from “Variables”. Set the type to int and name to item, and assign 0 as its initial value.

3. Drag the following block from “Control” and set to 9999 times.

4. Drag a “variable mode” from “Variables”, define its name to item and set the mode to “++”.

9.2. Scratch Project 209

ESP32 Starter Kit

5. Drag a “TM 1650 display” block from “Digital tube” and replace the string value with variable item. Add a delay
time of 0.5s after it.

6. Add a “set variable” block after the “repeat” block. Set item variable by 0. Otherwise, the item value will be out
of display range after 9999 loops.

Complete Code

210 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7. Code Explanation

1. Set the display string. Directly type numbers or letters you want to display in the blank

2. Set the ON or OFF of this TM 1650 digital tube. Each tube can be controlled separately.

3. It is able to clear the display or used as a master switch to turn on or turn off the digital tube.

9.2. Scratch Project 211

ESP32 Starter Kit

9.2.13 Project 10Dot Matrix Display

1. Description

This module consists of a 8x8 LED dot matrix with one control pin for each row as well as each column to adjust
the brightness of LED. Connecting with Arduino board, the brightness of LED is controlled to display characters and
figures via Arduino programming. In this way, simple characters, numbers and figures are able to be displayed. It also
can be applied in game machines or screens.

MAX7219 is an IC with SPI communication and can be used to control the 8x8 dot matrix. The MAX7219 SPI
communication has integrated in our libraries and you can recall directly.

212 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Wiring Diagram

3. Test Code

1.Drag the two basic code blocks.

2.Drag a “init matrix display” from “Matrix” and set CS to IO15. DIN and CLK are fixed pin respectively to IO23 and
IO18.

9.2. Scratch Project 213

ESP32 Starter Kit

3. Drag a “set brightness” block and set it to 3.

4. Drag a “image” block and choose heart icon.

5. Add a “refresh” block at the end.

Complete Code

214 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Test Result

After connecting the wiring and uploading code, a heart will be displayed on the dot matrix, as shown below

9.2. Scratch Project 215

ESP32 Starter Kit

5. Code Explanation

1. Set the CS pin. In the code, DIN is fixed to io23 and SLK to io18, while CS pin is optional. For convient wiring,
we select io15.

2. Draw pixels. This code block will light up or turn off pixels on the dot matrix by axis x and y, with red for on
and black for off.

3. Draw line. Locate the line by two group of coordinate points, also with red for on and black for off.

4. Show characters. We have add character libraries so you only need to type a letter to display it on the dot matrix.
Besides, it must be used cooperatively with a “rotation 180°” block.

5. Show numbers. Similarly, you only need to type a number to display it on the dot matrix, and it also must be
used cooperatively with a “rotation 180°” block.

6. Show scrolling character strings. Collocating a “rotation 180°” block, the specified scrolling strings will be
displayed after setting its speed.

7. Display image. For convenience, we have already integrated some emotion icons which can be selected directly.

216 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

8. Display fill colors. You may set to black (LED goes off) or red(LED lights up).

9. Refresh the display. The dot matrix must be refreshed if it displays something. Or else, an error may occur.

10. Set the brightness. You can lower the brightness when debugging to avoid offending to your eyes.

11. Set rotation angles. For high compatibility with more code, some data and icons need a rotation with the
avoidence of inverted display. That is why a “rotation 180°” block is necessary in codes.

9.2.14 Project 11: LCD

1. Description

Arduino I2C 1602 LCD is a commonly-used auxiliary device for MCU development board to connect with external
sensors and modules. It features a 16-bit wide character, 2-line LCD screen and adjustable brightness. This programable
module is convenient for data editing, display and management . Besides, it can display not only characters and figures
but sensors value, like temperature, humidity or pressure value.

As a result of its usability, the display is wildly applied in many fields, including smart home products, industrial
monitoring systems, robot control systems and automotive electronics systems.

9.2. Scratch Project 217

ESP32 Starter Kit

2. Working Principle

It is the same as IIC communication principle. Underlying functions have been packaged in libraries so that you can
recall them directly. If you are interested in these, you may have a further look of underlying driving principles.

218 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag the two basic code blocks.

2. Drag “init LCD” block from “LCD” and set the I2C address to 0x27.

9.2. Scratch Project 219

ESP32 Starter Kit

3. Drag the “LCD back light” block and set it to ON. Characters are not easy to read if there is no back light.

4. Drag a “LCD cursor position” block and set x to 3 and y to 0. Add an “LCD print” block and type “keyestudio”
in the blank.

5. Drag a “LCD cursor position” and set x to 2 and y to 1. Add an “LCD print” and type “Hello,world!” in the
blank.

Complete Code

220 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, turn on the LCD, and “Hello, world!” and “keyestudio!” will be
displayed on the LCD.

If the characters are unclear, please fix the backlight potentiometer by the small slotted screwdriver.

9.2. Scratch Project 221

ESP32 Starter Kit

6. Code Explanation

1. Set the IIC communication address. In this project, the address of LCD 1602 is 0x27.

2. Control the LCD backlight. The displayed characters will be seen much clearly if the back light is on.

3. Set the cursor position. It will provide an accurate position through axis x and y. Possible values are X: 0-15 and
Y: 0-1.

4. Print characters on LCD. The blank can be filled with characters or variables, which is convenient for displaying
the values from sensors and modules.

5. Blink the cursor at the display position. By default, the cursor is in inactive.

222 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2.15 Project 12: Servo

1. Description

This servo features high performance and high precision with a maximum rotation angle of 180°. Weighting only 9g,
it is perfectly suitable for any mini device in multiple occasions. What’s more, it enjoys short startup time, low noise
and strong stability.

2. Working Principle

Angle range: 180° (360°, 180° and 90°)

Drive voltage: 3.3V or 5V

Pin: Three wires

GND: Grounded(brown)

VCC: A red pin that connects to a +5v (3.3V) power

S: A orange signal pin that controlled via PWM signal

Control Principle: The rotation angle is controlled via duty cycle of PWM. Theoretically, standard PWM cycle is
20ms(50Hz), so pulse width should distribute within 1ms~2ms. However, the actual pulse width reaches 0.5ms~2.5ms,
which corresponds to 0°180°. Pay attention that, for the same signal, the rotation angle may vary from servo brands.

9.2. Scratch Project 223

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1.Drag the two basic blocks and put a “variable” block between them. Set the variable type to int, name to angle, and
assign 0 as its initial value.

2. Servo gradually rotates from 0° to 180°:
Add a repeat block and set the repeat times to 180(180 angles). Drag a “change variable” and a “servo” block and put
them in the repeat one. Name the variable “angle” and select the mode “++”. Set Servo PIN to IO4 and degree to the
named variable. Don’t forget to delay 15s.

224 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Servo gradually rotates from 180° to 0°: Repeat step 2, but set the variable mode to “- -”.

Complete Code

9.2. Scratch Project 225

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, the servo starts to rotate from 0° to 180° and then from 180° to 0°.

6. Code Explanation

1. Set the values of Servo. Servo pin and rotation angle can be controlled by setting parameters on this block.

2. Read the current degree of the Servo.

9.2.16 Project 13: Mini Lamp

1. Description

In this project, we are going to control a lamp via Arduino UNO and a button. When we press the button, the state of
the lamp will shift(ON or OFF).

226 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Working Principle

When the button is released, a voltage VCC passing through R29 provides a high level for S terminal. When pressed,
pin 1 and 3, pin 2 and 4 are connected and voltage on S1 arrives GND as a low level. At this moment, R29 avoids a
short circuit between VCC and GND.

9.2. Scratch Project 227

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Add two basic blocks.

2. Drag a “baud rate” from “Serial” and set it to 9600.

228 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Then drag a “print” block from “Serial”, type “Key status:” in the blank and set it to “no-warp”.

4. Set the IO15 pim to “input”.

5. Drag another “Serial print” block from “Serial” and set the mode to “warp”. Add a “state value of button” from
“Button” and set the pin to IO15.

Complete Code:

9.2. Scratch Project 229

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open the serial monitor and set the baud rate to 9600. When we press
the button, serial port prints “Key status: 0”; When we release the button, serial port prints “Key status: 1”.

6. Knowledge Expansion

Next, we will control the LED through the state of buttons.

Flow Chart

230 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Wiring Diagram

9.2. Scratch Project 231

ESP32 Starter Kit

Code:
1.Drag two basic blocks.

2. Set the LED pin to “output”and the button pin to “input”.

232 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Drag a “if else” block from “Control”. Add a “button pin” block from “Button” after “if” and set its pin to IO15.
Put an “LED output” block under “if” and set the output to HIGH, and put another under “else” and set to LOW.
LED pins are both at IO4.

Complete Code:

9.2. Scratch Project 233

ESP32 Starter Kit

8. Code Explanation

Note: Pin mode must be set to “input” when using the button module.
1. Judge whether the button is pressed. If so, this block expresses true.

2. Read the button value. When the button is not pressed, the value is 1. Or else, it is 0.

3. If the condition in the hexagon is true, “if” block will be executed. Otherwise, the program runs “else” according
to block.

234 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Set the baud rate. Please guarantee the serial baud rate fit the counterpart of serial monitor, or it won’t print
anything. The commonly used baud rate are 9600 and 115200, and here we set to 9600.

5. Print characters on serial monitor. The printed words are what you type in the blank. Besides, three print modes
are included: warp, no-warp and HEX (hexadecimal).

9.2.17 Project 14: Counter

1. Description

Arduino 4-bit digital tube counter can record numbers within 0~9999. It features display speed, count mode adjustment
as well as reset function. This module is wildly applied in real-time counter (such as button-press and DC motor rotation
count), gaming and experiment equipment.

9.2. Scratch Project 235

ESP32 Starter Kit

2. Flow Chart

236 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag the two basic blocks.

2. Set the button pin to “input”.

9.2. Scratch Project 237

ESP32 Starter Kit

3. put a “variable” block. Set the variable type to int and name to item. Assign 0 as its initial value.

4. Drag an “if” block from “Control” (it executes only when its condition is satisfied). Put a “Button pressed” block
from “Button” to the condition box(the hexagon one) and set the pin to IO19. Drag a “variable mode” block and
put it after “then”, and define it as “item” and set the mode to “++”.

5. Repeat step 4, but set the interface to IO18 and mode to “– –”.

6. Drag another “if” block from “Control” and define its condition that “interface IO17 button was be pushed?”.
Put a variable setting block after “then” and set the “variable by 0”.

238 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7. Drag a “if” block from “Control”. Find the “” block in “Operators” and fill the left blank with “variable item”
and the right with “9999”. Also, put a variable setting block after “then” and set the “variable by 0”.

8. Drag a “TM1650 display” block from “Digital tube” and set the displayed string to “variable item” block. Finally,
don’t forget to add a 0.2s delay.

Complete Code:

9.2. Scratch Project 239

ESP32 Starter Kit

240 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, press green button to add 1, yellow to minus 1, and red to reset.

6. Code Explanation

“>” block is used for judgment between two values. These two blanks can be replaced with either numbers or variables.

9.2.18 Project 15: Responder

1. Description

This programmable responder inputs and receives signals through Arduino development board and a group of buttons,
and it judges the correctness of answers via a LED. It is a good object to exercise students’ reaction ability and draw
their attention to questions. If the answer is correct, the respondent obtains a lot scores.

Moreover, it simplifies teachers’ manipulation of question-grabbers and cuts answer clutters. It may even stimulate
students’ interests in learning.

9.2. Scratch Project 241

ESP32 Starter Kit

2. Flow Chart

242 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag the two basic blocks and put a “variable” block between them. Set the variable type to int and name to item
with an initial assignment of 0. Set the LED pin to “output”, and the button pin to “input”.

9.2. Scratch Project 243

ESP32 Starter Kit

2. Add an “LED output” block, define its pin to IO27 and set the output to HIGH.

3. .Drag an “if” block and add the condition “interface IO19 button was be pushed?”.

4. Add a variable setting and four LED output blocks under “then”. Among them, we name the variable “item”
with an assignment of “0”, and set all outputs to LOW respectively at pin 12,13,14 and 27 (The responder works
only when all LED light off). Likewise, don’t forget a 0.2s delay.

244 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Add a “repeat until” block and set the “until” to “item = 1”, as shown below. When item = 1, exit the loop.

6. Drag another “if” block and set the condition “Interface IO16 button was be pushed?”. Add an “LED output”
block under “then” and set the output to HIGH at pin IO12. And add a “set item variable by 1” to exit this
condition block.

7. Repeat step 6, but set interface to IO17 and LED pin to IO13.

9.2. Scratch Project 245

ESP32 Starter Kit

8. Operate step 6 again, but set interface to IO18 and LED pin to IO14.

Complete Code:

246 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 247

ESP32 Starter Kit

5. Test Result

Connect the wiring and upload the code. The answers of respondents are only valid when the red LED is off(red button
is pressed).

When someone presses his/her button(yellow, green or blue), the appropriate LED as well as the red counterpart light
up. By now, rest of LED cannot turn on when pressing buttons. The responding action can be performed only when
the red button is pressed again.

6. Code Explanation

1. Condition loop module. When the conditions in the diamond box of the module are met, the loop will exit .

2. “=” block is used to judge whether the two values are equal.

9.2.19 Project 16: Timebomb

1. Description

This project will give you an opportunity experience an interesting timebomb game.

In this project, the dot matrix represents your timebomb, while the digital tube displays remaining time. Buttons can
not only control the bomb but also set its time. You may set a countdown to control this bomb, and it explodes when
the countdown is over. Beyond that, a buzzer is adopted to alarm.

Anyhow, by programming on multiple sensors, your comprehensive capability of logic thinking can be enhanced.

248 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Flow Chart

9.2. Scratch Project 249

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag the two basic blocks.

2. Set the button pin to “input”.

250 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Add an “init matrix display” block from “Matrix” and set the pin CS to IO15. What follows it are a “brightness”
block with its value of 3 and a “variable” block (set variable type to int and name to item, assign 0 as its initial
value).

4. In “Matrix”, drag a “fill color” block and select “black”(i.e. all LED go off to clear previous display). Add a
“display image” to define a smile face. Then, put a refresh block to renew the display.

5. Drag an”if” block and fill the condition box with “interface IO33 button was be pushed?”. Add a “variable mode”
block after “then” and set its name to item and mode to “++”.

9.2. Scratch Project 251

ESP32 Starter Kit

6. Repeat the operation in step 5, but set the interface to IO32 and the mode to “- -”.

7. Drag an “if” block to judge whether pin IO26 is pushed. In this “if”, we add a repeat block and set its condition
to “item” = 0 .

In the “repeat until” loop, put a “variable mode” and set “item” to “- -”, as shown below. Drag a “TM1650 display”
block from “Digital tube” and define the showing string as “variable item” block. Then add a “buzzer output” block
and set output to HIGH at pin IO27 followed by a 0.5s delay. Re-operate the last procedure but set the output to LOW.

252 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

8. Program another loop code and define the condition as “interface IO25 button was be pushed?”. The following
executions are in this loop. Put a “TM1650 display” block and define the showing string as “variable item” block.
Then repeat step 4 but here we set the image to a crying face.

9.2. Scratch Project 253

ESP32 Starter Kit

9. Drag an “if then” block and fill the blank with a condition: item 9999. Add a statement “set item variable by 0”
in this condition block.

10. Drag a “TM1650 display” from “Digital tube” and define the showing string as “variable item”. For the same,
don’t forget to delay 0.2s.

Complete Code:

254 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 255

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, press blue button to add time, green to reduce and red to reset. Press
yellow button for counting down. When it is over, the bomb explodes.

9.2.20 Project 17: Invasion Alarm

1. Description

This invasion alarm system is able to detect invaders in houses or small offices and warn the host to take measures in
time.

In this project, the sensor monitors a certain area. Some device on Arduino board will trigger LED to light up and
buzzer to beep for caution if a movement is detected in that zone. What’s more, its sensibility is adjustable for a more
accurate detection.

Virtually, this module features practicability, easy installation and low costs. With the exception of home and office, it
also applies to factories, warehouses and markets, which, to a large extent, protects property security.

2. Working Principle

Human body(37°C) always emits infrared ray with a wavelength of 10m, which approximates to that of the sensor
detected. On this account, this module is able to detects human beings movement. If there is, PIR sensor outputs a
high level about 3s and, it outputs a low level.

256 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Add the two basic blocks and drag a “baud rate” block from “Serial” between them. Set the serial baud rate to
9600.

9.2. Scratch Project 257

ESP32 Starter Kit

2. Add an “if else” block. Put a “read PIR motion sensor” block in the hexagon box and set the interface to IO5,
thus it will determine whether there is a human motion. Add two “serial print” blocks after “then” and “else”
and set both modes to “warp”. If the condition is satisfied, print “Someone Invaded”. Or else, print “No one”,
then add a 1s delay time.

Complete Code:

258 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600. When the sensor detects
movement, the serial port prints “Someone Invaded”, or else, it prints “No One”.

9.2. Scratch Project 259

ESP32 Starter Kit

6. Expansion Code

Let’s make an invasion alarm. When the PIR sensor detects human, LED lights up and the buzzer emits sound. In
contrast, LED goes off and the buzzer stays quiet.

Flow Chart

260 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Wiring Diagram

9.2. Scratch Project 261

ESP32 Starter Kit

Code

262 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7.Code Explanation

When PIR senses human motions, it outputs a high level. Therefore, we can judge whether there is a movement by
reading the development board pin connected to this sensor.

9.2. Scratch Project 263

ESP32 Starter Kit

9.2.21 Project 18: Beating Heart

1. Description

In this project, a beating heart will be presented via an Arduino board, a 8X8 dot matrix display, a circuit board and some
electronic components. By programming, you can control the beating frequency, heart dimension and its brightness.

2. Wiring Diagram

3. Test Code

1. Drag the two basic blocks.

2. Initialize the dot matrix display. Set the CS pin to IO15 and its brightness to 3. Put these two executions between
the basic blocks.

The following executions are all in “forever” block.

3. Clear the display. Control the display to draw lines and establish coordinates system and its origin as the follow-
ing. Then, refresh the display to show the smaller heart with a delay of 1s.

264 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Repeat step 3 but draw lines as the picture below to show a bigger heart.

9.2. Scratch Project 265

ESP32 Starter Kit

Complete Code:

266 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 267

ESP32 Starter Kit

4. Test Result

After connecting the wiring and uploading code, the two sizes of hearts are displayed alternately.

9.2.22 Project 19 : Dimming Lamp

1. Description

The dimming lamp adjusts the brightness of LED via a potentiometer and an Arduino controller. The brightness is
subject to resistance value, which can be read and adjusted by connecting the ends of the potentiometer to digital or
analog pins on board. What’s more, this system is applied to control voltage or current of other devices such as fans,
bulbs and heaters.

268 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Working Principle

Essentially, potentiometer is an element that can change the value of resistance. According to Ohm’s law(U=I*R), the
resistance affects the voltage. Our potentiometer is 10K.

In this project, the maximum resistance is 10K. The ESP32 board will equally divide the voltage of 3V into 4095 parts
(3/4095=0.0007326007326). The analog voltage is obtained by multiplying the read value and 0.0007326007326.

9.2. Scratch Project 269

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

The analog value of the potentiometer can be read:

1. Drag the two basic blocks. Put the baud rate setting block between them and set to 9600.

2. Add a “serial print” block in “forever” loop, and select “warp” as the print mode.

3. Drag a “read the value” from “pot” to the serial print, and set the pin to IO33.

270 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, and the analog value will
be displayed within the range of 0-4095.

9.2. Scratch Project 271

ESP32 Starter Kit

6. Expansion Code

We will control the brightness of LED via a potentiometer. As we know, it is influenced by PWM. However, the range
of analog value is 0-4095 while that of PWM is 0-255. Thus, a “map(value, fromLow, fromHigh, toLow, toHigh)”
function is needed.

Wiring Diagram

1. Drag the two basic blocks.

2. Add a variable block and set it to local. Select “int” as its type and name it as “pot”.

3. Drag a “map” function from “Data” and put it to the assignment position. Set the value of “map” to “read the
value of pot IO33”, whose range is from (0,4095) to (0,255).

4. Finally add an “LED analogWrite” block. Set the pin to IO25 and analog value to the variable “pot”.

272 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code:

7. Code Explanation

1. map function. The analog value range can be converted from 0-4095 to 0-255.

2. Read the analog value of potentiometer by setting its pin.

9.2.23 Project 20: Light Pillar

1. Description

The resistance(less than 1K) of the photoresistor varies from the light, thus it can control the brightness of the dot
matrix. When controlling, we connect this resistor to an analog pin on the board to monitor the change of resistance.
In this way, the light automatically controls the brightness of the display.

Besides, the photoresistor is widely applied to our daily life. For instance, a curtain automatically opens or closes
according to the outer light intensity.

9.2. Scratch Project 273

ESP32 Starter Kit

2. Working Principle

When it is totally in dark, the resistance equals 0.2M, and the voltage at signal terminal (point 2) approaches to 0V. The
stronger the light is , the smaller the resistance and voltage will be.

274 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

The analog value of the photoresistor can be read:

1. Drag the two basic blocks. Put the baud rate setting block between them and set to 9600.

2. Add a “serial print” block in “forever” loop with the mode “warp”.

3. Drag a “read the value” block from “Light” to the “serial print” block, and set the pin to IO33.

9.2. Scratch Project 275

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, the analog value will be
displayed, within the range of 0-4095.

276 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

6. Expansion Code

In this expansion project, we use this photoresistor to sensing the ambient light intensity. The middle two columns are
included in this experiment to represent light intensity. The lighter it is, the more the lighting LED will be. This forms
a “light pillar”.

Wiring Diagram

1. Drag the two basic blocks.

2. In “Matrix”, initialize the dot matrix display and set pin CS to IO15. Add a “brightness setting” block and assign
to 3.

3. Drag a “variable” block. Set its range to Local, type to int and name to light.

9.2. Scratch Project 277

ESP32 Starter Kit

4. Assign a map function to the variable. Add “read the value of light IO33” from “Light” to the value of map
function, whose range is from (0,4095) to (0,7).

5. Find the following blocks in “Matrix”. Clear the display first, and then draw lines on the display at dots (x0:3
y0:0, x1:3 y1: variable light) and (x0:4 y0:0, x1:4 y1: variable light). Finally refresh the display of matrix.

Complete Code:

278 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7.Code Explanation

Read the analog value of photoresistor by setting the pin.

9.2.24 Project 21: Sound Controlled LED

1. Description

Sound controlled LED is a device used to detect sound in a way that controls the brightness of LED, which is composed
of a Arduino board and some components. It can connect to multiple sensors such as microphones. It converts sound
to changing voltage signal to be received by Arduino to control the LED on and off.

2. Working Principle

When detecting a sound, the electret film in microphone vibrates, which changes the capacitance and generates a subtle
change of voltage.

Next, we make use of LM386 chip to build a proper circuit to amplify the detected sound up to 200 times, which can
be adjusted by a potentiometer. Rotate it clockwise to enlarge the times.

9.2. Scratch Project 279

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Find the “read the value” block in “Sound”, and print the read sound in the serial port. Construct blocks as follows.
Pay attention that do not add a delay when using the sound sensor.

280 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, the analog value will be
displayed.

6. Expansion Code

The commonly seen corridor light is a kind of sound controlled light. Meanwhile, it also includes a photoresistor.

Differed from that, here we establish a model that an LED is only affected by sound. When the analog volume exceeds
100, LED lights up for 2s and then goes off.

Flow Chart

9.2. Scratch Project 281

ESP32 Starter Kit

Wiring Diagram

282 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Code
1. Drag two basic blocks.

2. Drag an “if else” block, and fill the hexagon with a item100 block. Set the value to “read the value of sound
IO33”. If the condition is satisfied, LED outputs a HIGH level at pin IO25 with a delay of 2s; or else, it outputs
a LOW level at the same pin without a delay.

9.2. Scratch Project 283

ESP32 Starter Kit

Complete Code:

284 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

7. Code Explanation

Read the value of sound by setting the related pin.

9.2.25 Project 22: Noise Meter

1. Description

Arduino noise meter embodies the sound signal to a series of dots, which are converted into patterns displayed on dot
matrix.

2. Wiring Diagram

9.2. Scratch Project 285

ESP32 Starter Kit

3. Test Code

1. Drag the basic blocks and initialize the display. Set the pin CS to IO15 and brightness to 3. Then add a variable
block and select int and name it as “item” with an initial assignment of 0.

2. Add a variable block and name it as “item”. Adopt a map function to convert the read sound value range from
0-4095 to 0-7, yet the hypothesis maximum value of sound is 800.

3. Clear the display.

4. Program a condition. If the variable item is greater than -1, the dot matrix displays (x0:0 y0:0 x1:1 y1:0) in color
of red.

5. Repeat step 4, but the judgment is whether item is greater than 0. If so, dots at (x0:1 y0:0 x1:1 y1:1) will light
up. By that analogy, build code blocks referring to the following coordinates.

6. Finally, refresh the display.

Reference Coordinates:

286 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 287

ESP32 Starter Kit

288 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code:

9.2. Scratch Project 289

ESP32 Starter Kit

290 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Test Result

After connecting the wiring and uploading code, the noise level view is displayed on dot matrix, as shown below.

9.2.26 Project 23: Smart Cup

1. Description

In this project, we mainly adopt the Arduino development board to create a programmable smart cup, which reveals the
temperature of inner liquid through a RGB indicator. It can control the brightness of the light by setting a temperature
threshold. If the threshold is exceeded, it will get brighter. Otherwise, it gets darker.

The smart cup enables to help users better control the temperature of their drinking water and effectively prevent
overheating or freezing.

9.2. Scratch Project 291

ESP32 Starter Kit

2. Working Principle

Related settings in DHT11 is provided by manufacturers, so you only need to orderly read and process data according
to its sequence chart.

Besides, the relevant codes are packaged in our libraries, which is convenient for you to set pins and read values.

292 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag two basic blocks. Add the serial baud rate module and set the baud rate to 9600.

2. Drag the DHT module from “Temperature and humidity” and set the pin to IO26, mode to dht11.

3. Add serial print module with no-wrap, and set the print to “RH:”, then follow the steps below, and add a delay
of 1s.

Complete Code:

9.2. Scratch Project 293

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, click to open serial monitor to set baud rate to 9600, and the
temperature and humidity value will be displayed.

294 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

6. Expansion Code

In this expansion experiment, we will make a smart cup which can show liquid temperature. We divide 100 into four
parts with an LED representing for each:

**Red LED: ** 100-75°C

**Yellow LED: ** 75-50°C

**Green LED: ** 50-25°C

Blue LED: 25-0°C

Flow Chart

9.2. Scratch Project 295

ESP32 Starter Kit

Wiring Diagram

296 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Code
1. Drag two basic blocks. Then set the 4 LED pins to “output” , the DHT11 pin to IO26, mode to dht11 and the

variable name to temp.

9.2. Scratch Project 297

ESP32 Starter Kit

2. Assign the temperature value of DHT11 to the variable temp

3. Use the “if else” to judge the variable temp. If the conditions are met, the corresponding LED will be on,
otherwise it will be off.

Complete Code:

298 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 299

ESP32 Starter Kit

7. Code Explanation

1. In this code block, the marked number can be filled in the blank so that multiple temperature and humidity
sensors can be connected. After setting the pin and mode, the value can be read. In this project, we set the mode

to DHT11.

2. Read the temperature and humidity code block.

9.2.27 Project 24: Weather Station

1. Description

This weather station records the ambient temperature and humidity value via Arduino board and a temperature and
humidity sensor.

Moreover, it empowers to adjust temperature and humidity values according to environmental parameters as a way to
achieve comfortable environmental conditions.

300 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Wiring Diagram

3. Test Code

1. Add two basic modules. Initialize the LCD 1602 and turn ON the backlight of the LCD 1602 (remember to
switch the LCD to ON). Set the pin of dht to IO26 and mode to dht11. Set two int variables to “RH“ and “temp“
to 0.

9.2. Scratch Project 301

ESP32 Starter Kit

2. Assign humidity value to the variable RH, and the temperature value to the variable temp.

3. Set the LCD display position to x: 0 and y: 0. Add the lcd display module and set the display character to
“humidity:”. Add the lcd display module again and add the variable RH to the white box.

4. Repeat the step 3, but set y : 1 and the display character to “temperature:” and add the variable temp to the white
box.

302 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code:

9.2. Scratch Project 303

ESP32 Starter Kit

304 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

4. Test Result

After connecting the wiring and uploading code, LCD display will directly discover the ambient humidity and temper-
ature value.

9.2.28 Project 25: Ultrasonic Rangefinder

1. Description

This ultrasonic rangefinder measures distance of obstacles by emitting sound waves and then receiving the echo. That
is to say, the distance is not an immediate value, but an observed one by a theoretical calculation of time difference
between emitter and receiver.

Ultrasonic is able to detect the shape of objects, set up automatic doors and estimate flow velocity and pressure.

What’s more, it supports cooperative works with computers. As a result, the measured value can be transmitted to
computers via Arduino board.

In daily life, it is widely used for motors, servos and LEDs as well as systems(automatic navigation, control and security
monitoring systems).

9.2. Scratch Project 305

ESP32 Starter Kit

2. Working Principle

As we all know, ultrasonic is a kind of inaudible sound wave signal with high frequency. Similar to a bat, this module
measures distance of obstacles by calculating the time difference between wave-emitting and echo-receiving.

Maximum distance: 3M

Minimum distance: 5cm

Detection angle: 15°

306 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

In “forever” block, construct two “serial print” blocks and drag a “read distance” block from “Ultrasonic”. Set trig pin
to IO13 and echo pin to IO14 both in cm. Do not forget a delay of 0.5s.

9.2. Scratch Project 307

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open serial monitor to set baud rate to 9600, and the serial port starts
to print the distance value.

6. Knowledge Expansion

Let’s make a rangefinder.

We display characters on LCD 1602. Program to show “Keyestudio” at (3,0) and “distance:” at (0,1) followed by the
distance value at (9,1).

When the value is smaller than 100(or 10), a residue of the third(or the second) bit still exists. Therefore, an “if”
judgement is necessary to determine a certain condition.

Wiring Diagram

308 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Code
1. Drag the two basic blocks.

2. In “LCD”, initialize the LCD. Drag an “LCD print” block and add character string “Keyestudio” (It also can
be put out of “forever” block as this display is fixed). Add a “variable” block and set type to int and name to
“distance” with an initial assignment of 0.

3. Assign the read distance value to the variable “distance”. Set the LCD to print “Distance” and followed by the
distance value (and we need calculate the front displayed characters in advance to set a cursor followed them).

9.2. Scratch Project 309

ESP32 Starter Kit

4. Build a “clear display residue” block when the number of displayed bits decrease. We firstly adopts a condition
to judge whether the distance is smaller than 100(or 10). If so, a space will be printed at the residue of the third
(or the second) bit to clear previous display. Lastly, don’t forget to add a delay of 0.5s.

Complete Code:

310 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 311

ESP32 Starter Kit

7. Code Explanation

Read the distance after setting the trig pin and echo pin. The unit of displayed value is optional (cm or inch).

9.2.29 Project 26: Human Body Piano

1. Description

The analog piano includes a development board and an ultrasonic sensor. It enables to play different tones by detecting
the position of your fingers. Thus, this module is able to stimulate a piano to perform music and songs.

312 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Flow Chart

9.2. Scratch Project 313

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Assign the distance value to item, and the played tones vary from distance. Seven tones are included: DoReMiFaSo-
LaSi.

314 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 315

ESP32 Starter Kit

5. Test Result

Connect the wirings and upload the code. Play Do when the distance is less than 10. Play Re when the distance is
within 10~20. Play Mi when the distance is within 20~30. Play Fa when the distance is within 30~40. Play So when
the distance is within 40~50. Play La when the distance is within 50~60. Play Si when the distance is within 60~70.

9.2.30 Project 27: Intelligent Parking

1. Description

This intelligent parking system detects and optimizes parking position via an ultrasonic sensor. With this system, wrong
parking is avoided to a large extent.

Firstly, you need to install the sensor around the carpark. And then it will detect the distance between the car and its
edges and send the information to the development board so as to control the car to automatically adjust to the optimal
parking position.

316 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Flow Chart

9.2. Scratch Project 317

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Assign the detected distance value to a variable, and judge whether it is greater than the set threshold value. If so,
corresponding lines on the dot matrix light up. In this way, a distance can be revealed by lighting lines.

Reference Coordinates:

318 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code:

9.2. Scratch Project 319

ESP32 Starter Kit

320 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, lines will be displayed on the dot matrix. If the detected distance is
less than 50cm, there will be fewer lines.

9.2.31 Project 28: Intelligent Gate

1. Description

The intelligent gate is an intelligent parking lot system that integrates MCU and ultrasonic sensor, which automatically
controls the gate according to the distance of cars, so as to better control the car access.

When a certain distance is reached, MCU receives the signal from the sensor and estimates the distance via the signal
intensity. If the car is approaching or leaving, MCU will open or close the gate via a servo.

9.2. Scratch Project 321

ESP32 Starter Kit

2. Flow Chart

322 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

Define a variable “distance” with the assignment of detected distance value by the ultrasonic module.

Next, Compare the distance value with 30cm. If it is smaller than 30cm, the servo will rotate to 180° for 5s. Otherwise,
the servo returns to 0°.

9.2. Scratch Project 323

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, the servo will rotate to 180° for 5s if the detected distance is less than
30cm. On the contrary, the servo will rotate to 0°.

9.2.32 Project 29: IR Remote Control

1. Description

The IR remote control uses IR signal to control LED, which greatly simplifies the process of controlling LED.

324 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

2. Working Principle

In this project, we often use a carrier of about 38K for modulation.

IR remote control system includes modulation, emitting and receiving. It sends data through modulating, which im-
proves the transmission efficiency and reduces the power consumption.

Generally, the frequency of carrier modulation is within 30khz~60khz(usually 38kHz). The duty cycle of the square
wave is 1/3, as shown below, which is decided by the 455kHz crystal oscillator on the emitting end. An Integer frequency
division is essential for crystal oscillator at this end, and the frequency coefficient usually evaluates 12. Therefore,
455kHz÷1237.9kHz38kHz.

38KH carrier (complete) emitting diagram:
Carrier frequency: 38KHz

Wave length: 940nm

Receiving angle: 90°

Control distance: 6M

9.2. Scratch Project 325

ESP32 Starter Kit

Schematic diagram of remote control buttons:

326 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

1. Drag the two basic blocks.

2. Find and drag the “IR remote init” block from “IR Remote” and set its pin to IO19. Add a “baud rate” block
from “serial” and set to 9600.

3. Drag an “if” block and fill its condition with “Received data”. Only when the IR module receives data, code
blocks in “if” will execute.

9.2. Scratch Project 327

ESP32 Starter Kit

4. Drag another “if” block and set its condition to “Read the data 0”. Only when this condition is satisfied, serial
port starts to print data.

This sensor works so fast that the code may run twice or more when you are pressing control buttons. However,
the second time of a same command will send out a value of 0, so a “>” block is necessary for the avoidance of
duplication.

5. Add a “serial print” block after “then”. Set to print the read data from “IR remote” module in the mode of “warp”.

6. In the end, do not forget to refresh data after execution.

328 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

Complete Code:

9.2. Scratch Project 329

ESP32 Starter Kit

330 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, open the serial monitor and set the baud rate to 9600. Press the button
on the remote control unit, and you will see the value in hexadecimal.

6. Expansion Code

In this expansion code, we will make a light controlled by an IR remote switch. Press OK to light up the LED and press
it again to turn it off.

To realize this repeatable operation, the variable “item” is essential in the whole code. For the first time, item = 0 so
codes in “else” run to assign 1 as its new value. For the second time when item = 1, however, “if” block executes to
reassign to 0, alternatively.

Wiring Diagram:

9.2. Scratch Project 331

ESP32 Starter Kit

Code:

332 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 333

ESP32 Starter Kit

7. Code Explanation

1. Initialize the IR remote module after setting its receiving pin.

2. .Judge whether the sensor has received data. If so, related code blocks will run.

3. Read the received data from IR remote control.

4. Refresh the received data after each complete receiving execution.

9.2.33 Project 30: Smart Home

1. Description

In this technology era, we are all familiar with smart home. It is a system that can control electric appliance via buttons.

In this project, we seek to stimulate a smart home via an IR remote control. With Arduino MCU as its core, it can be
used to control light, air conditioners, TV and security monitors.

334 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

9.2. Scratch Project 335

ESP32 Starter Kit

2. Flow Chart

336 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

3. Wiring Diagram

4. Test Code

With the IR remote control, this smart home reveals various sensor values on LCD, including a temperature and hu-
midity sensor, a sound sensor, a photoresistor, a potentiometer and an ultrasonic sensor.

9.2. Scratch Project 337

ESP32 Starter Kit

338 Chapter 9. Scratch Tutorial

ESP32 Starter Kit

5. Test Result

After connecting the wiring and uploading code, we can see the corresponding contents on LCD by pressing buttons.
OK button clears the sensor display.

6. Code Explanation

The blocks are so many that we adopt “Make a Block” function. By doing this, numerous blocks are packaged and can
be directly recalled, which vastly simplify the whole program.

Click “My Block” to make a self-defined block, and you may build your own code blocks.

9.2. Scratch Project 339

ESP32 Starter Kit

340 Chapter 9. Scratch Tutorial

	1.Introduction
	2.Specifications
	3.Pin out
	4.Components
	Inventor Learning Kit Expansion Board
	Product Introduction
	About Keyestudio
	Obtain Information and After-sales Service
	Warning
	Copyright
	ESP32 Inventor Learning Kit
	1. Description
	2. Features
	3. Parameters
	4. Kit

	Installation Steps
	Arduino Tutorial
	1.Install Development Software and Driver
	1).Install Arduino IDE（Windows）
	2).Install Arduino IDE（Mac）

	2.Install Development Board and Driver
	1).Windows System
	2).MAC System

	3.Install the Development Board
	1). Windows System
	2).MAC System

	4.Install Libraries
	1).What are Libraries?
	2).How to Install the Libraries?

	Arduino Project
	Download the Arduino code files and library files
	Project 1: LED Blinking
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 2: Breathing LED
	1. Description
	2. What is PWM?
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 3：SOS Distress Device
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 4: Traffic Light
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 5：Rainbow Ambient Light
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Extended Code
	7. Code Explanation

	Project 6：Water Flow Light
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result
	6. Code Explanation

	Project 7： Active Buzzer
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 8：Music Performer
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 9：Digital Tube Display
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	**6. Extended Code **
	7. Code Explanation

	Project 10：Dot Matrix Display
	1. Description
	2. Working Principle
	Dot Matrix Modulo Operation
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 11: LCD
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 12: Servo
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 13: Mini Lamp
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 14: Counter
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 15: Responder
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 16: Timebomb
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 17: Invasion Alarm
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion

	Project 18: Beating Heart
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 19 : Dimming Lamp
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 20: Light Pillar
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion

	Project 21: Sound Controlled LED
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion

	Project 22: Noise Meter
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Code
	5. Code Explanation

	Project 23: Smart Cup
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 24: Weather Station
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 25: Ultrasonic Rangefinder
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 26: Human Body Piano
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 27: Intelligent Parking
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 28: Intelligent Gate
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 29: IR Remote Control
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion

	Project 30: Smart Home
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Scratch Tutorial
	Scratch Code file download
	Scratch Project
	Project 1: LED Blinking
	1. Description

	2. Working Principle
	3. Wiring Diagram

	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 2: Breathing LED
	1. Description
	2. What is PWM?
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 3：SOS Distress Device
	1. Description
	2. Wiring Diagram
	3. Test Code
	4.Test Result

	Project 4: Traffic Light
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 5：Rainbow Ambient Light
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 6：Water Flow Light
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 7：Active Buzzer
	1. Description
	2. Working Principle
	3. Wiring diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 8：Music Performer
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 9：Digital Tube Display
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Extended Code
	7. Code Explanation

	Project 10：Dot Matrix Display
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result
	5. Code Explanation

	Project 11: LCD
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 12: Servo
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 13: Mini Lamp
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	8. Code Explanation

	Project 14: Counter
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 15: Responder
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

	Project 16: Timebomb
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 17: Invasion Alarm
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7.Code Explanation

	Project 18: Beating Heart
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 19 : Dimming Lamp
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7. Code Explanation

	Project 20: Light Pillar
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7.Code Explanation

	Project 21: Sound Controlled LED
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7. Code Explanation

	Project 22: Noise Meter
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 23: Smart Cup
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7. Code Explanation

	Project 24: Weather Station
	1. Description
	2. Wiring Diagram
	3. Test Code
	4. Test Result

	Project 25: Ultrasonic Rangefinder
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Knowledge Expansion
	7. Code Explanation

	Project 26: Human Body Piano
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 27: Intelligent Parking
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 28: Intelligent Gate
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result

	Project 29: IR Remote Control
	1. Description
	2. Working Principle
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Expansion Code
	7. Code Explanation

	Project 30: Smart Home
	1. Description
	2. Flow Chart
	3. Wiring Diagram
	4. Test Code
	5. Test Result
	6. Code Explanation

